NVIDIA V100 Performance Characteristics on IBM AC922 (POWER9) System and HPC Application Performance

Pidad D’Souza (pidsouza@in.ibm.com)
Aditya Nitsure (anitsure@in.ibm.com)
ISDL, IBM India Pvt Limited
Agenda

- IBM POWER Systems
- NVIDIA Tesla V100
- AC922 System Configuration
- AC922 System & GPU Characteristics
- HPC Application Characteristics
 - NAMD
 - GROMACS
 - CPMD
 - HPCG
 - 3D-FFT
POWER Processor Technology Roadmap

POWER7
45 nm

POWER7+
32 nm

POWER8 Family
22nm

POWER9 Family
14nm

Built for the Cognitive Era
- Enhanced Core and Chip Architecture Optimized for Emerging Workloads
- Processor Family with Scale-Up and Scale-Out Optimized Silicon
- Premier Platform for Accelerated Computing

Enterprise & Big Data Optimized
- Up to 12 Cores
- SMT8
- CAPI Acceleration
- High Bandwidth GPU Attach

Enterprise
- 8 Cores
- SMT4
- eDRAM L3 Cache

1H10

2H12

1H14 – 2H16

2H17 – 2H18+
IBM® Power System™ Accelerated Compute Server (AC922)

- Delivers unprecedented performance for modern HPC, analytics, and artificial intelligence (AI)
- Designed to fully exploit the capabilities of CPU and GPU accelerators
 - Eliminates I/O bottlenecks and allows sharing memory across GPUs and CPUs
 - Extraordinary POWER9 CPUs
 - 2-4 NVIDIA® Tesla® V100 GPUs with NVLink
- Co-optimized hardware and software for deep learning and AI
- Supports up to 5.6x more I/O bandwidth than competitive servers
- Combines the cutting edge AI innovation Data Scientists desire with the dependability IT
- Next Gen PCIe - PCIe Gen4 2x faster
IBM POWER9 Processor – General features

- 14nm finFET semiconductor
- Stronger thread performance
- POWER ISA 3.0
- Enhanced Cache Hierarchy
- NVIDIA NVLink 2.0 high speed link with 25GB/s per link bandwidth
- I/O System – PCIe Gen4
- Improved device performance and reduced energy
- Nominal & Peak freq: 2.2GHz & 2.8GHz
NVIDIA Tesla V100 GPU

- Designed for AI Computing and HPC
- Second-Generation NVLink™
- HBM2 Memory: Faster, Higher Efficiency
- Enhanced Unified Memory and Address Translation Services
- Maximum Performance and Maximum Efficiency Modes

- Number of SM/cores: 80/5120
- Double Precision Performance: 7.5 TFLOPS
- Single Precision Performance: 15 TFLOPS
- GPU Memory: 16GB
- Memory bandwidth: 900 GB/s

https://devblogs.nvidia.com/inside-volta/
High bandwidth interconnect NVLink 2.0
150GB/s bi-directional bandwidth between CPU-GPU and GPU-GPU
Coherent access to CPU memory
AC922 System Characteristics
CPU STREAM Bandwidth (preliminary, not submitted)

STREAM benchmark: Measure system memory bandwidth.
(https://www.cs.virginia.edu/stream/)
NVIDIA Volta 100 Compute – Single and Double Precision

NVIDIA V100 GPU SGEMM/DGEMM

1.5X higher compute than NVIDIA P100

- Applications to have more compute power
- Shorten time to completion
- Accomplish more simulation/experiment

Note: cuBLAS APIs used for measurements
NVIDIA V100 GPU memory bandwidth (GPU STREAM)

1.6X higher bandwidth than NVIDIA P100
CPU to GPU NVLink Vs PCIe3 bandwidth

NVLink 2.0 is 5.6X better than PCIe3

Note: NVIDIA bandwidth test used for measurement
NVLink 2.0 Vs PCIe 3.0
Host to Device bandwidth (affinitised to socket 0)

- Minimize communication latencies
- Unlock PCIe bottlenecks
- Transfer larger data at high speed
- Ideal for out-of-core computations
HPC Application Performance
System Components Impacting HPC performance

• Compute (CPU & Accelerators)
• Memory capacity
• Memory bandwidth
• Interconnect Latency and Bandwidth
• IO performance
• IBM HPC Software Stack
Nanoscale Molecular Dynamics (NAMD)

The Molecular Dynamics software from the University of Illinois at Urbana-Champaign

http://www.ks.uiuc.edu/Research/namd/

Compute atomic trajectories by solving equations of motion numerically using empirical force fields
Calculate the force as the negative gradient of a scalar potential energy function

\[
\vec{F}(\vec{r}) = -\nabla U(\vec{r}),
\]

...\(\vec{r}\) is position vector

For systems of biomolecules, this potential function involves the summing

\[
U(\vec{r}) = \sum U_{\text{bonded}}(\vec{r}) + \sum U_{\text{nonbonded}}(\vec{r})
\]

Research areas

- Protein folding
- Viruses
- Symbiont bacteria
- Molecular motors
- Nanoengineering
- Bioenergetics
- Quantum biology
- Neurobiology
NAMD(2.13 Dev Sandbox) Observations

Work distribution on GPUs

- Less amount of data exchange with increased number of GPUs
- Large amount of data transfer – Potential NVLink benefit
NAMD on IBM POWER Systems

Higher performance with fewer systems
A versatile package to perform molecular dynamics simulation with the Newtonian equations of motion for systems with hundreds to millions of particles

- GPU acceleration is core part of GROMACS that works in combination with GROMACS domain decomposition and load balancing code

- Gromacs team claims –
 - GPU accelerated code performances up to 5x better compared to CPU-only processing.
Gromacs 2016.3/RF Observations

Work distribution on GPUs

KERNEL INVOCATION

- Data size in GB
- # of GPUs

CPU - GPU Data Exchange

- H2D: Host to Device
- D2H: Device to Host

- Less amount of data exchange with increased number of GPUs
- Large amount of data transfer – Potential NVLink benefit
Car-Parrinello Molecular Dynamics (CPMD)

The Molecular Dynamics software from the University of Illinois at Urbana-Champaign
http://www.ks.uiuc.edu/Research/namd/

- A parallelized plane wave / pseudopotential implementation of density functional theory
- Designed for ab initio molecular dynamics
- Most suitable for dynamical simulations of condensed systems or large molecules
 - less for small molecules or bulk properties of small crystals
- Computationally highly optimized for vector and scalar supercomputers, shared and distributed memory machines and combination thereof (SMP)

Capabilities

- Solution of electronic and ionic structure
- XC-functional: LDA, GGA, meta-GGA, hybrid
- Molecular dynamics in NVE, NVT, NPT ensembles
- General constraints (MD and geometry optimization)
- Metadynamics, Free energy functional
- Path integrals, QM/MM, Wannier functions
- Response properties: TDDFT, NMR, Raman, IR, . . .
- Norm conserving and ultra-soft pseudo potentials
Improved computational chemistry (CPMD) simulation CPMD on IBM POWER9™ with NVLink

- CPMD on IBM POWER9™ AC922 with NVLink 2.0 delivers 2.0X reduction in execution time compared to prior generation IBM POWER System S822LC for HPC
- POWER9 with NVLink 2.0 unlocks the performance of GPU-accelerated version of CPMD by enabling lightning fast CPU-GPU data transfers
 - 3.3 TB of data movement required between CPU and GPU
 - 70 seconds for NVLink 2.0 transfer time vs 300+ seconds for traditional PCIe bus transfer time

Source: Manish Modani, ISDL, IBM
HPCG: Unified Memory + OpenACC Example

OpenACC

- Directive based programming to offload workload to GPUs
- With Unified Memory no data transfer directives are needed

HPCG Benchmark

- Solves linear equation of sparse problem with CG method
- Added 25 lines of OpenACC directives to local SMP codes, achieved 80% of CUDA optimized implementation

Source: Jun Doi, Tokyo Research Labs, IBM
ifdef _OPENACC
#pragma acc data deviceptr(pColIdx,pMatVal,rv,xv)
#else
#pragma omp target data map(to:nrow,nnz)
use_device_ptr(pColIdx,pMatVal,rv,xv)
#endif
{
 for(c=0;c<pOpt->nColor;c++){
 is = pOpt->colorOffset[c];
 ie = pOpt->colorOffset[c + 1];
 #ifdef _OPENACC
 #pragma acc kernels async(1)
 #pragma acc loop independent private(irow,sum,icol,j)
 #else
 #pragma omp target teams distribute parallel for
 private(irow,sum,icol,j)
 #endif
 for(i=is;i<ie;i++){
 irow = i;
 sum = rv[irow];
 }
 }
}
FFT kernels are very slow if data is not on that GPU, because of overheads and latencies of implicit data copy (data migration).

Prefetch version achieves double of the performance of cuFFT Xt because we only exploit 1 transpose.

Calculation time is much smaller than all-to-all time, overlapped time by pipelining is very small.

With prefetch, large performance improvement.

Source: Jun Doi, Tokyo Research Labs, IBM
Conclusion

• AC922 Designed for HPC, Analytics, AI

• High speed interconnect NVLink between CPU & GPU

• Unified memory, OpenACC simplifies programing, with good performance
References

• http://www.gromacs.org/
• http://www.ks.uiuc.edu/Research/namd/
Acknowledgements

We are grateful to Tom Heller, Jun Doi, Manish Modani and Pradeep Kumar Madhavan for their guidance and support.
Thank You