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Intro

Current deep learning for video surveillance is perfect?

Image Classification

Deep Learning Ready for video
surveillance?

(¥
Yet

DL is truly a technological enabler, but need
to be more developed for surveillance.
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Intro

Al is still in its infancy in computer vision industry applications

Persons of interest?

Different visual aspects
according to applications

Photo album
\ view

Home
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Towards large-scale inference engine for T view

T view is a Video Surveillance as a Service (VSaaS)

Data Sources

\? view

White Labeling Customers
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Sensors
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Secure & Safe
Cloud Platform
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Real-time monitoring
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Problem

Conventional intrusion detection for physical security service

Real intrusion event is very rare!

Physical Security Service
Sensor Alarm — P h’ — High False-alarm
(PIR sensor) e (over 99%)

Dispatch security officers

Fresnel Lens < 5 main cause for false-alarm >

1. Indoor and outdoor temperature
difference

900 alarms / day 2. Animal (dog, cat)

. 3. Air conditioner operation
1 true positive / day

oIR 4. Inappropriate direction

“Passive Infra-Red”

99% false-alarms

5. Direct sunlight or vehicle headlight

-
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Motivation

Deep video analytics for physical security service

Physical Security Service
N Low False-alarm

. : 7
Deep learning . (under 5%)

Dispatch security officers

15t step: 2" step: 3™ step:
Sensor Detection Motion Detection Human Detection

Frequency of false-alarms

i

Examples of real problem

True events
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Challenge: accuracy

Challenges in accuracy... surely!

Night (illumination)

\?view

View Variation & Distortion
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Challenge: performance

Challenges in cost $$$... rare interest of DL infra cost for service (inference)!

6,000 USD

TESLA P40

NVIDIA® Tesla™ P40 GPU Computing Accelerator - 24GB GDDRS5 - Passive Cooler

-’E

View Image Gallery

?view

>

NVIDIA.

NVIDIA part #: 900-2G610-0000-000
EXPERIENCE MAXIMUM INFERENCE THROUGHPUT

fike 1o other i inhistory. GPUs
NVIDIA Pascal™ aechil i i he new ara

tearning applications 3t scale.

The NVIDLA Tesia P40 e-buil nu th
tearning deployment. With 47 TOPS (Tera-Operations Per Second) of inference
i GPU, asi with 8 Tesla P40s.
delivers the performance of over 140 CPU servers.
dty, CPUs capable of

L experience. The 30X lower
fatency than a CPU for real-time responsiveness In even the most compiex
models.

Price: $5,699%
Active

Add To Order

4x Boost in Less than One Year

™ 8x M40 {FP32) = 8x P40 (INTB)
100,000
80,000
4
3 60,000
o
£ 40,000
20,000
o]
GoogleNet AlexNet
P40
# of CUDA Cores 3840
Peak Single Precision 12 TeraFLOPS
Peak INT8 47 TOPS

Low Precision

Video Engines
‘GDDRS5 Memory

Power

4x 8-bit vector dot product
with 32-bit accumulate

1x decode engine, 2x encode engines
24 GB @ 346 GB/s

250w

GoogLenet, alexnet, batch size 125, CPU: Dual Sacket Intel E5-2697v4

Inference* cost (time)
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Objective
<Goal >
Higher accuracy in human detection &
Lower cost
c 80 p Jorsurveillance
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Challenge: accuracy

threshold o.2 is applied for both networks

\?view
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SIDNet: SKT Intrusion Detection Net
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300 videos [ 137,000 images [ 0.7million labels e

CCTV DB construction for training
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Challenge: performance

Challenges in cost $$$%... 30x more cost than the conventional motion analysis

[Conventional VA] [Current Deep VA]
30x more
Motion-based Human Detection cost! Deep Learning-based Human Detection
2,129 fps (150 ch * 15 fps) @ 20 core CPU 67 fps @ TitanX-Maxwell GPU
3,750 fps (250 ch * 15 fps) @ K5000 GPU 85 fps @ P40 GPU

VA throughput for fps variation (1~30)

70 Titan-X (GPU Usage 80%) ——P100 (80%)
60

One $6,000 GPU (P100, P40) can handle only 5 ch at 15 fps!
50

40

30

Throughput(Num of channels)

20

5 fps
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We need much faster inference engine for service!
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\',

New opportunity for 3 party... NVIDIA’s TensorRT

- N

view

Step 1: Optimize a trained neural network

%y,

Step 2: Perform real-time inference
with GIE Runtime

Up To 3x More Images/sec with INT8 Precision

7,000

6,000
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mFP32 mINTE
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Batch Size
GoogLenet, FP32 vs INTS precision + TensorRT on

Tesla P40 GPU, 2 Socket Haswell E5-2698 v3@2.3GHz with HT off

Calibration using 5 batches | Calibration using 10 batches | Calibration using 50 batches
NETWORK Top1 Top5s Top1 Tops Top1 Top5 Top1 Top5
Resnet-50 73.23% 91.18% 73.03% 91.15% 73.02% 91.06% 73.10% 91.06%
Resnet-101 74.39% 91.78% 74.52% 91.64% 74.38% 91.70% 74.40% 91.73%
Resnet-152 74.78% 91.82% 74.62% 91.82% 74.66% 91.82% 74.70% 91.78%
VGG-19 68.41% 88.78% 68.42% 88.69% 68.42% 88.67% 68.38% 88.70%
Googlenet 68.57% 88.83% 68.21% 88.67% 68.10% 88.58% 68.12% 88.64%
Alexnet 57.08% 80.06% 57.00% 79.98% 57.00% 79.98% 57.05% 80.06%
NETWORK Top1 Top5s Diff Top1 Diff Top5s Diff Top1 Diff Top5 Diff Top1 Diff Top5
Resnet-50 73.23% 91.18% 0.20% 0.03% 0.22% 0.13% 0.13% 0.12%
Resnet-101 74.39% 91.78% 0.13% 0.14% 0.01% 0.09% 0.01% 0.06%
Resnet-152 74.78% 91.82% 0.15% 0.01% 0.11% 0.01% 0.08% 0.05%
VGG-19 68.41% 88.78% -0.02% 0.09% 0.01% 0.10% 0.03% 0.07%
Googlenet 68.57% 88.83% 0.36% 0.16% 0.46% 0.25% 0.45% 0.19%
Alexnet 57.08% 80.06% 0.08% 0.08% 0.08% 0.07% 0.03% -0.01%
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Proposed approach

Apply TensorRT to SIDNet

Layers SIDNet liensorRil Remarks
Input o o
Convolution (0] (0]
Batch norm (0] (0]
Leaky-RELU RELU X * Replace Leaky-RELU with RELU
Max-pooling (0] (0
Route 0 X * Implement rout layer via concat layer

= No computation, no issue with INT8

= CUDA implementation as custom plug-in layer

Reorg 0 X = No computation, no issue with INT8

Reqion 0 X = CUDA implementation as custom plug-in layer

\’ view SK*



Proposed approach
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Route layer — equivalent with concat layer

Route
Input A

I Concat

Input B

\?view

4

Output C
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Proposed approach

Reorg layer — CUDA implementation of Reorg layer as TensorRT’s custom plug-in layer

2 x 2 kernel

[ Input ] [ Output ]
N X 512 x 26 X 26 N X 2048 x 13 x 13

v VieW Sl??elecom



Proposed approach
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Region layer — CUDA implementation of Region layer as TensorRT’s custom plug-in layer

I —_—

— lf:XIYIhIW

Anchor box1 —<

1: confidence

+
} 2: classes
—

— 4%y, hw

Anchorbox5 —

1: confidence

2: classes

oy

TP view

Input: 13x13x35 feature map
13x13x5X(4+1+2) : [h, w, anchor, (x, y, h, w, confidence,
class)]

Output: list of bbox, each bbox have (x,y, h, w,

confidence)

Apply NMS to get final object detection result

HEREREN
[TTTTTT]
= —

Detection
window

e

[
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Proposed approach

SIDNet@FP32 — 2x faster with TensorRT

e SIDNet has 96 layers, but after applying tensorRT only 30 layers remains

e TensorRT merge conv+BN+scale+RELU 4 layers into just one layer

ALL UL 1AL VL T

96 layers 30 layers

e Efficiently use GPU memory to reduce unnecessary memcpy

/

concat layer

-y
\[ view Shlemm
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Proposed approach

SIDNet INTS8 calibration process (Ref.: "8-bit inference with TensorRT")

® Calibration dataset: COCO 2014 validation 8,000 images(about 20% of validation set)
® Batch file generation: 1000 batches with 8 images/batch

® Apply exactly the same pre-processing as training steps

e No saturation: map |[max| to 127 above |threshold| to 127

-lmax| 0.0- +|max| -|T| 0.0- +|T|
9090363 —¢ 3:%#&8“ $3—9898—9¢—9¢ 8:88883

9 988 9¢ 3¢ 96 I0BC 30¢ $2 98 9¢ 9% 300 98¢
127 0: 127 127 0: 127

racy loss, in general e Weights: no accuracy improvement
Activations: improved accuracy

Figure from “8-bit inference with TensorRT”, GTC 17’

\) view SK,F. .
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KISA & T view datasets

KISA I view

#videos 100 100

Extremely small object Pose variance
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Results: accuracy

21

Model

Reference: YOLO v2

DarkCaffe

vi
Caffe framework

v2
SIDNet@FP32

Calibration with
COCO dataset

v3
SIDNet@INT8

\?view

Precision(KISA)

72

72

742

732

Recall (KISA)

80.2

80.2

89.4

91.4

Precision (T view)

79-5

79-5

Recall (T view)
80.2
80.2
75-1
745
e

—
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Results: performance

YOLO v2 SIDNet

® O YOLO-v2 vs SIDNet

(x=1132, y=459) ~ R:255 G:255 B:255

?view
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Results: performance

Time measurement: network inference until bbox result

We exclude time of two modules for fair comparison for all experiments:
» Image buffer transfer time from CPU to GPU for it depends on system hardware
= NMS, which is not necessary in our intrusion detection system

1200

980
1000 -
800 - 746
a. 600 -
455
400 -
216
200 -
85
0 _
YOLO v2 SIDNet@FP32 SIDNet@INTS, SIDNet@INTS, SIDNet@INTS,
batch=1 batch=4 batch=256
- i Runon P40
\l View SK ‘telecom
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Batch inference

SVA DVA
: Deep Learning Inference
2 VGA @ A2 0O
RTSP handler :H |:| |:| |:| |:| |:| ,;’;"O,x
: OQO
o220
N O
VA Engine 'y
- Asynchronous frame allocqtion to threads
A 4
| DEC | | DEC | | DEC | DEC |:||:| |: |:||:||:| Batch Detection
Results
'm0 || mo || mD | L. .
threada thread2 threads thrsad v
| GPU Rest Server
v
. http A
GPU Rest Client Virtualization (Docker, VMWare, etc.)
CPU | GPU | | GPU | | GPU | | GPU |
| CPU |
SIDNet Batch size
@l 1 4 8 16 32 64 128 256
Total time
(ms) 2.20 5.36 9.84 17.44 33.92 66.56 131.84 261.12

Time / frame

(ms) 2.20 1.34 1.23 1.09 1.06 1.04 1.03 @

2.1xfaster 1,000,000 runs on P40
)
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Conclusion

YOLO v2 : 85 fps SIDNet : 980 fps

11x faster

3840 cores

NVIDIA Tesla P40

(x=4, y=45) ~ R:185 G:189 B:198 (x=4, y=45) ~ R:185 G:189 B:198

. O SIDNet
c 8-| '
‘g Fas;er R-CNN 550512 E © [o) }IOZ Ol/e
esnet
et o : °
8 : 550300
Faster R-CNM

| H o]
o © :

Fast R-CNN '
g 7edo :
o . o
%3 R-CNN H
> [e] ]
< : YoLO
c H o
e '
Q '
= 60 H

0 30 50 100

Frames Per Second
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Future works

* Online Incremental Learning for Individual Cameras

« JetsonTX based Deep Learning Inference for Front-end Devices (Camera, etc.)

\/’ view

Initial model set-up
(data collection,
labeling, training)

A self-evolving cycle
Autorr:attc N Model
Inference > selectionof —* Training
. update
training data

Compact
Deep Model

T

—* User feedback (Hit or Fail)

X Note that this may NOT be always available

NVIDIA JETSON TX2

>
5
C
z
m
3
4
4
m
A
2
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