

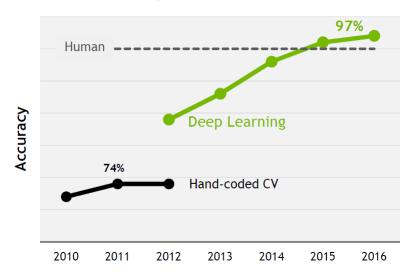
Table of contents

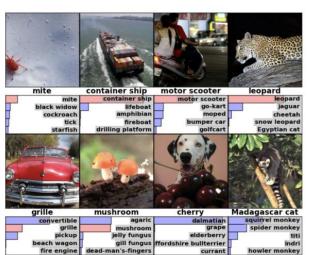
- 1 Intro
- 2 Motivation & Objective
- 3 Challenges & Solutions
- 4 Results
- 5 Future works

Intro

Current deep learning for video surveillance is perfect?

Image Classification





Ready for video surveillance?

DL is truly a technological enabler, but need to be more developed for surveillance.

Intro

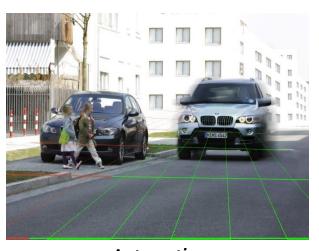
AI is still in its infancy in computer vision industry applications

Persons of interest?

Different visual aspects according to applications

CCTV

Photo album

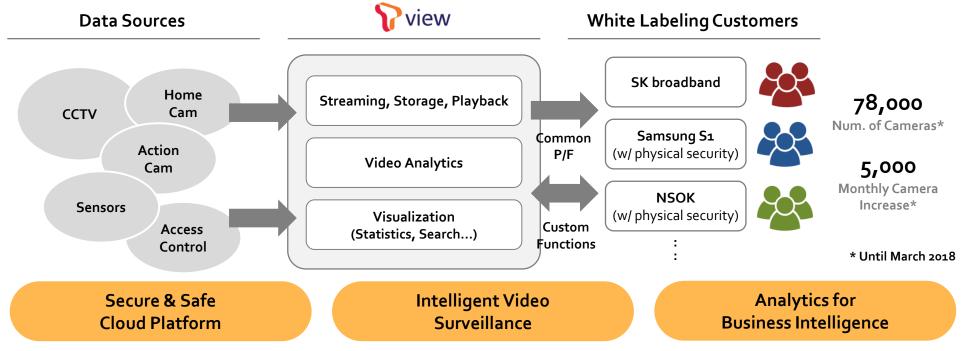


Automotive

Home

Towards large-scale inference engine for T view

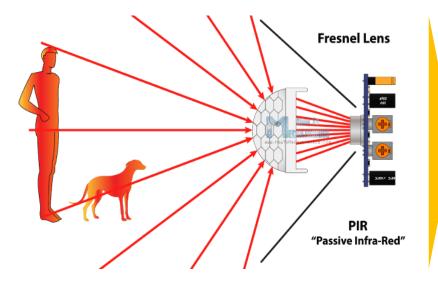
T view is a Video Surveillance as a Service (VSaaS)



Problem

Conventional intrusion detection for physical security service

Real intrusion event is very rare!



900 alarms / day

1 true positive / day

99% false-alarms

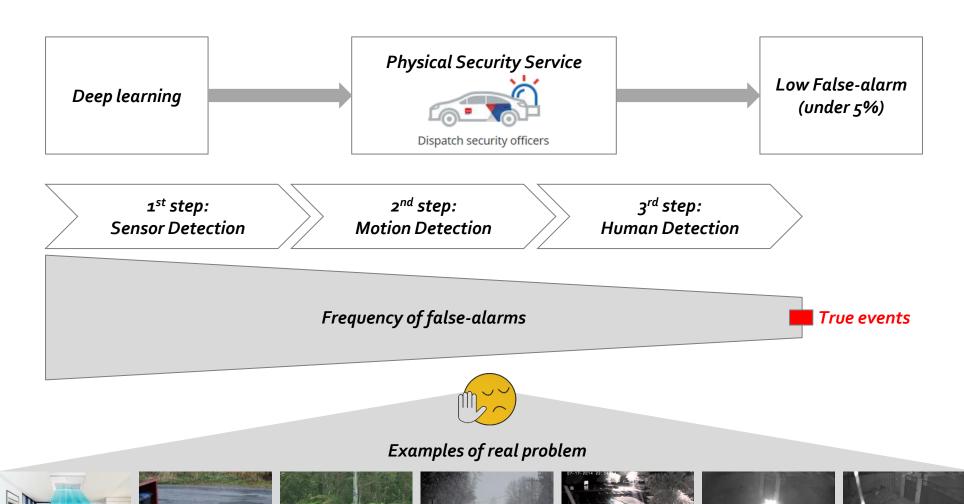
< 5 main cause for false-alarm >

- 1. Indoor and outdoor temperature difference
- 2. Animal (dog, cat)
- 3. Air conditioner operation
- 4. Inappropriate direction
- 5. Direct sunlight or vehicle headlight

SK telecom

Motivation

Deep video analytics for physical security service



Challenge: accuracy

Challenges in accuracy... surely!

Night (illumination)

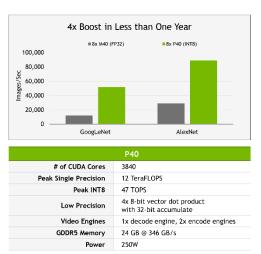
Weather

View Variation & Distortion

Long Distance & Low Quality

Challenge: performance

Challenges in cost \$\$\$... rare interest of DL infra cost for service (inference)!



GoogLeNet, AlexNet, batch size - 128, CPU: Dual Socket Intel E5-2697v4

6,000 USD

NVIDIA® Tesla™ P40 GPU Computing Accelerator - 24GB GDDR5 - Passive Cooler

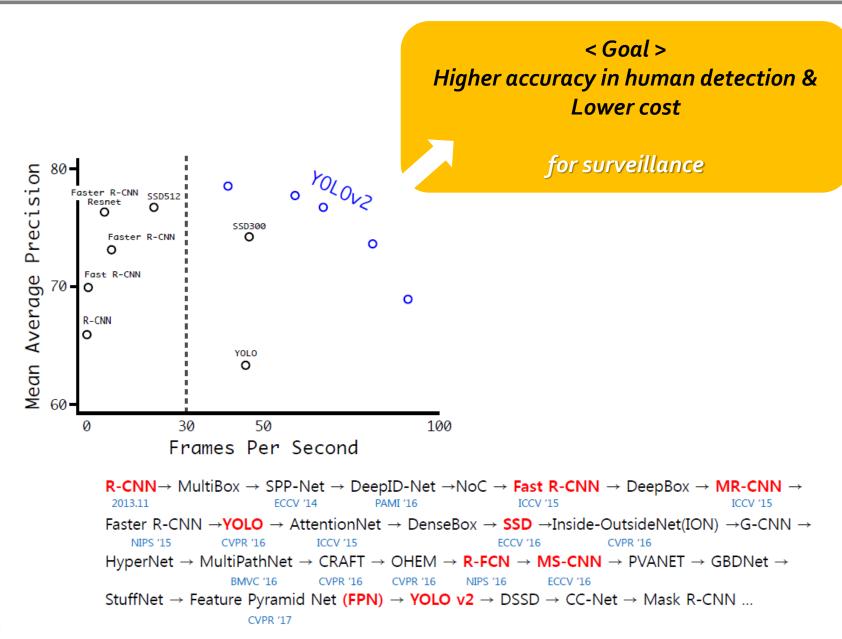
DVIDIA

NVIDIA part #: 900-2G610-0000-000

As models increase in accuracy and complexity, CPUs are no longer capable of delivering interactive user experience. The Tesla P40 delivers over 30X lower latency than a CPU for real-time responsiveness in even the most complex

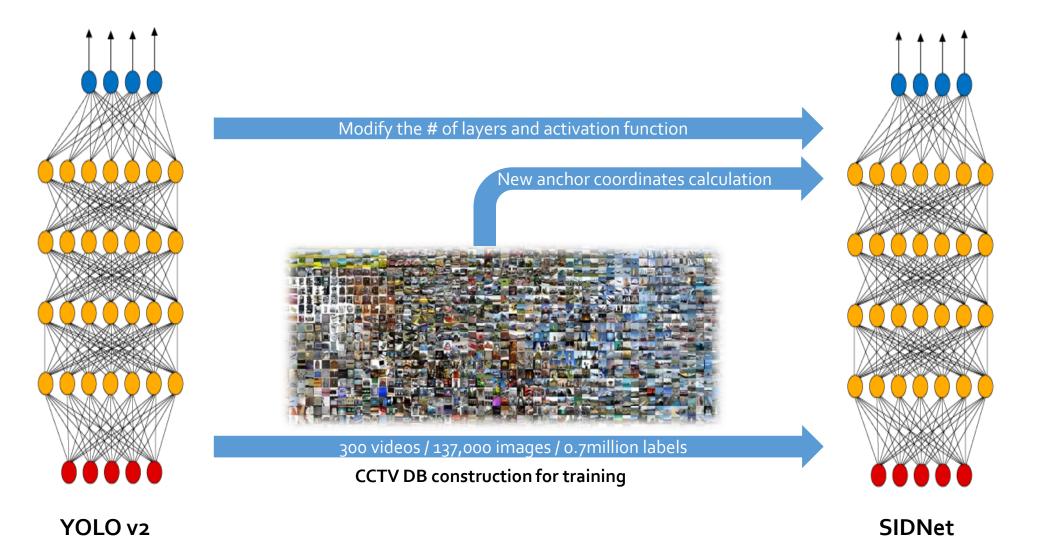
Inference* cost (time)

Objective



threshold 0.2 is applied for both networks

SIDNet: SKT Intrusion Detection Net



Challenge: performance

Challenges in cost \$\$\$... 30x more cost than the conventional motion analysis

[Conventional VA]

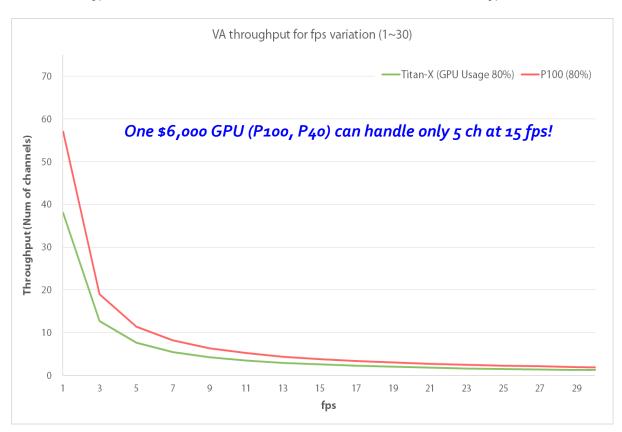
[Current Deep VA]

Motion-based Human Detection

2,129 fps (150 ch * 15 fps) @ 20 core CPU **3,750** fps (250 ch * 15 fps) @ K5000 GPU

Deep Learning-based Human Detection

67 fps @ TitanX-Maxwell GPU **85** fps @ P40 GPU

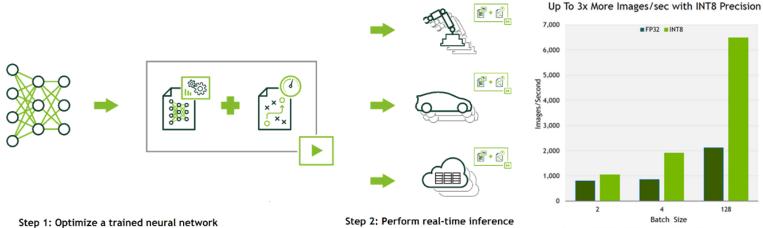


30x more

cost!

We need much faster inference engine for service!

New opportunity for 3rd party... NVIDIA's TensorRT



with GIE Runtime

Batch Size GoogLenet, FP32 vs INT8 precision + TensorRT on Tesla P40 GPU, 2 Socket Haswell E5-2698 v3@2.3GHz with HT off

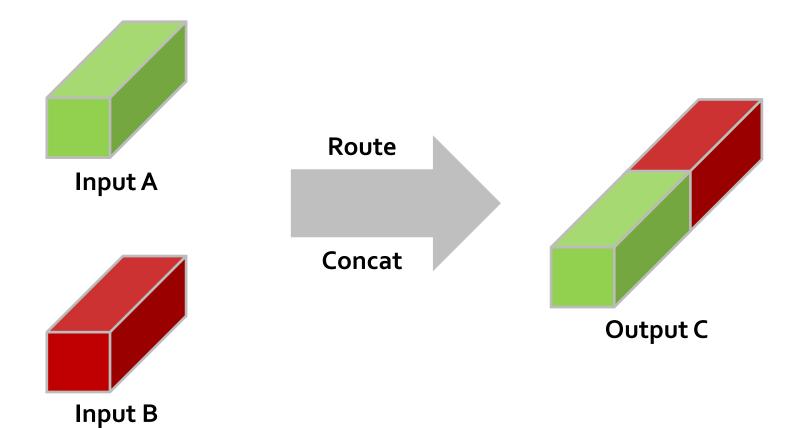
■FP32 ■INT8

	FP32		INT8							
			Calibration using 5 batches		Calibration using 10 batches		Calibration using 50 batches			
NETWORK	Top1	Top5	Top1	Top5	Top1	Top5	Top1	Top5		
Resnet-50	73.23%	91.18%	73.03%	91.15%	73.02%	91.06%	73.10%	91.06%		
Resnet-101	74.39%	91.78%	74.52%	91.64%	74.38%	91.70%	74.40%	91.73%		
Resnet-152	74.78%	91.82%	74.62%	91.82%	74.66%	91.82%	74.70%	91.78%		
VGG-19	68.41%	88.78%	68.42%	88.69%	68.42%	88.67%	68.38%	88.70%		
Googlenet	68.57%	88.83%	68.21%	88.67%	68.10%	88.58%	68.12%	88.64%		
Alexnet	57.08%	80.06%	57.00%	79.98%	57.00%	79.98%	57.05%	80.06%		
NETWORK	Top1	Top5	Diff Top1	Diff Top5	Diff Top1	Diff Top5	Diff Top1	Diff Top5		
Resnet-50	73.23%	91.18%	0.20%	0.03%	0.22%	0.13%	0.13%	0.12%		
Resnet-101	74.39%	91.78%	-0.13%	0.14%	0.01%	0.09%	-0.01%	0.06%		
Resnet-152	74.78%	91.82%	0.15%	0.01%	0.11%	0.01%	0.08%	0.05%		
VGG-19	68.41%	88.78%	-0.02%	0.09%	-0.01%	0.10%	0.03%	0.07%		
Googlenet	68.57%	88.83%	0.36%	0.16%	0.46%	0.25%	0.45%	0.19%		
Alexnet	57.08%	80.06%	0.08%	0.08%	0.08%	0.07%	0.03%	-0.01%		

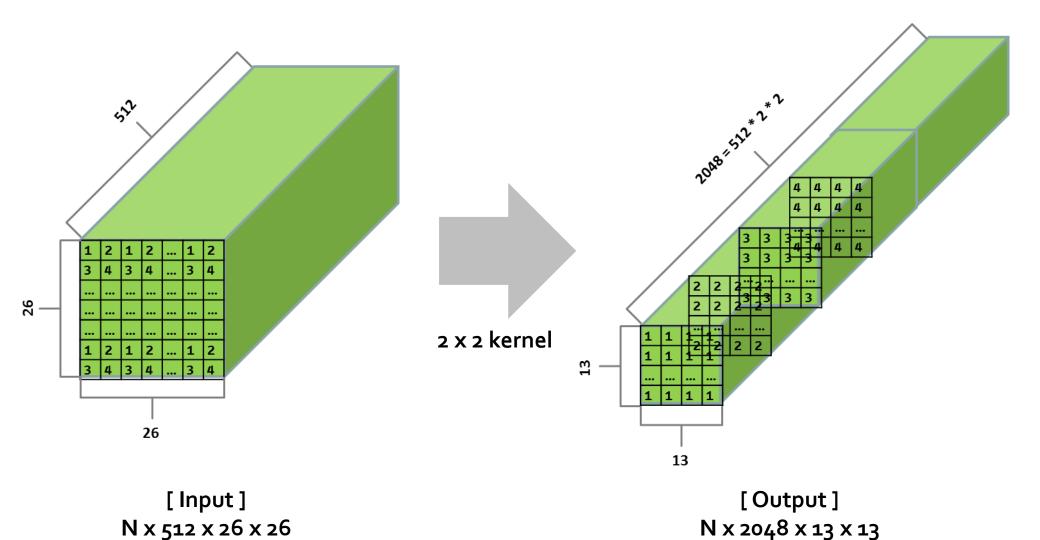
Apply TensorRT to SIDNet

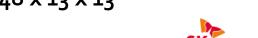
Layers	Layers SIDNet		Remarks			
Input	Input O					
Convolution	0	0				
Batch norm	0	0				
Leaky-RELU	RELU	X	■ Replace Leaky-RELU with RELU			
Max-pooling	0	0				
Route	0	X	 Implement rout layer via concat layer No computation, no issue with INT8 			
Reorg	0	x	 CUDA implementation as custom plug-in layer No computation, no issue with INT8 			
Region	0	X	 CUDA implementation as custom plug-in layer 			

Route layer – equivalent with concat layer

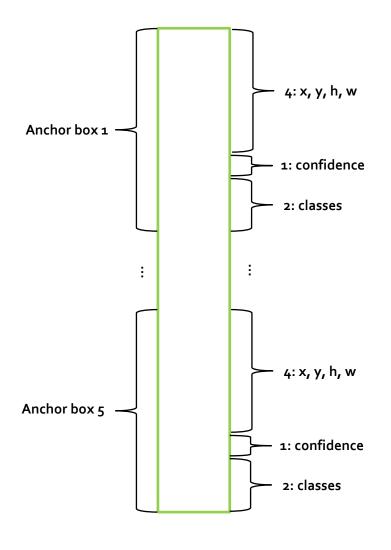


Reorg layer – CUDA implementation of Reorg layer as TensorRT's custom plug-in layer

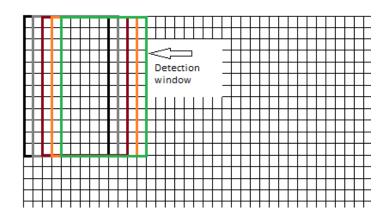




Region layer – CUDA implementation of Region layer as TensorRT's custom plug-in layer



- Input: 13x13x35 feature map
- 13x13x5x(4+1+2): [h, w, anchor, (x, y, h, w, confidence, class)]
- Output: list of bbox, each bbox have (x, y, h, w, confidence)
- Apply NMS to get final object detection result

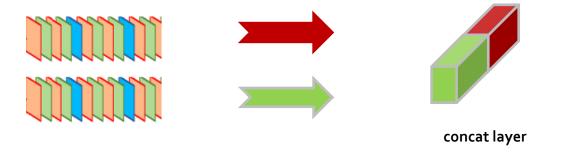


SIDNet@FP32 – **2x** faster with TensorRT

- SIDNet has 96 layers, but after applying tensorRT only 30 layers remains
- TensorRT merge conv+BN+scale+RELU 4 layers into just one layer



• Efficiently use GPU memory to reduce unnecessary memcpy



SIDNet INT8 calibration process (Ref.: "8-bit inference with TensorRT")

- Calibration dataset: COCO 2014 validation 8,000 images(about 20% of validation set)
- Batch file generation: 1000 batches with 8 images/batch
- Apply exactly the same pre-processing as training steps

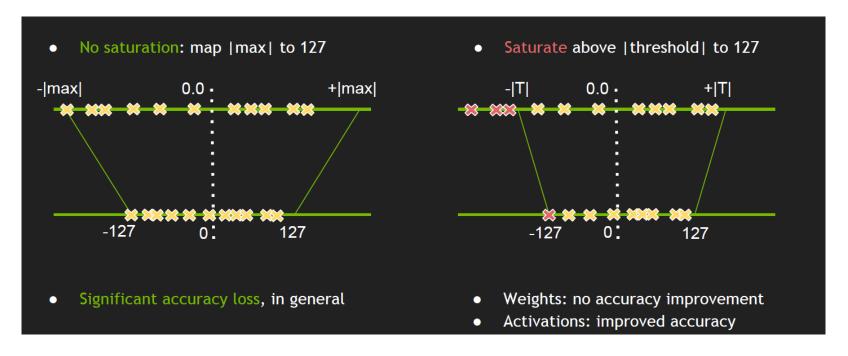


Figure from "8-bit inference with TensorRT", GTC 17'

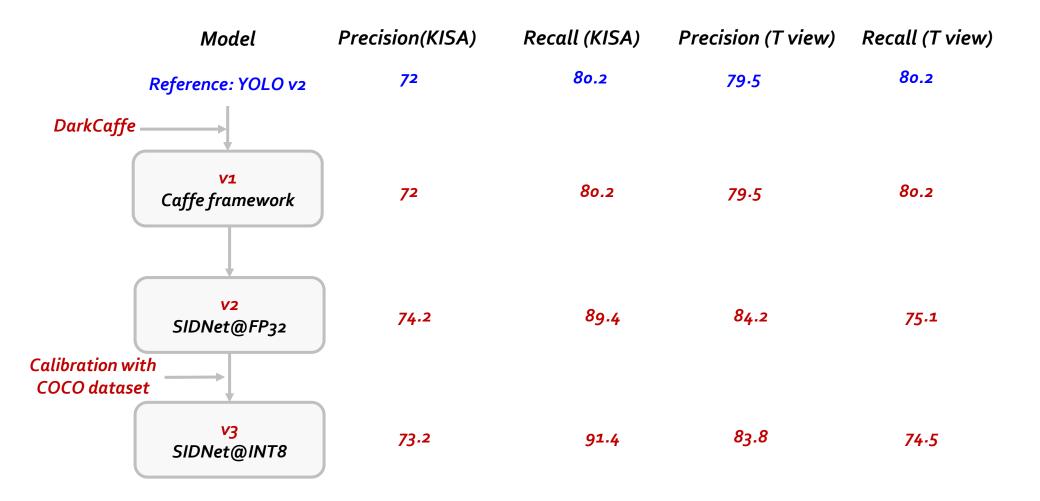
KISA & T view datasets

	KISA	T view
#videos	100	100

Day Night

Outdoor Indoor Extremely small object Pose variance

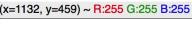
Results: accuracy



Results: performance

YOLO v2 SIDNet

YOLO-v2 vs SIDNet

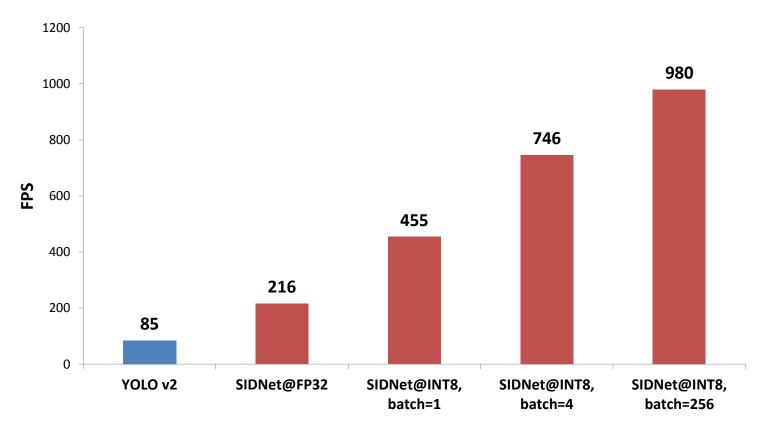


Results: performance

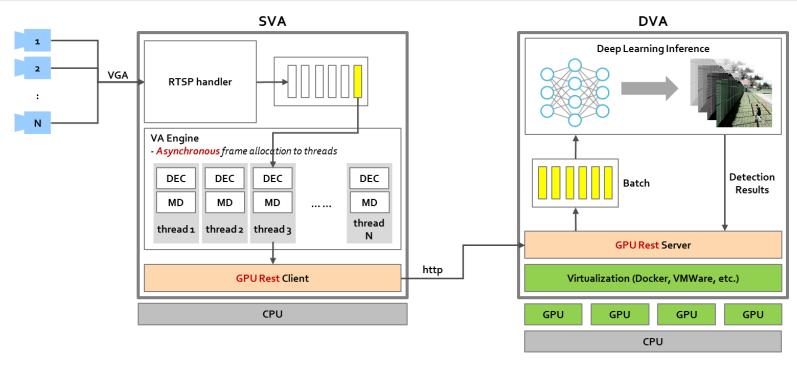
Time measurement: network inference until bbox result

We exclude time of two modules for fair comparison for all experiments:

- Image buffer transfer time from CPU to GPU for it depends on system hardware
- NMS, which is not necessary in our intrusion detection system



Batch inference

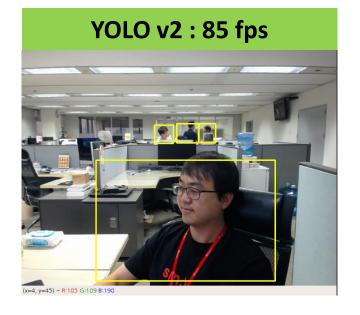


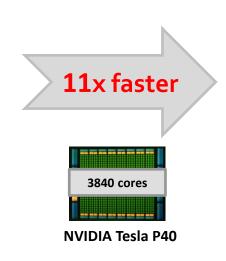
SIDNet	Batch size							
@INT8	1	4	8	16	32	64	128	256
Total time (ms)	2.20	5.36	9.84	17.44	33.92	66.56	131.84	261.12
Time / frame (ms)	2.20	1.34	1.23	1.09	1.06	1.04	1.03	1.02

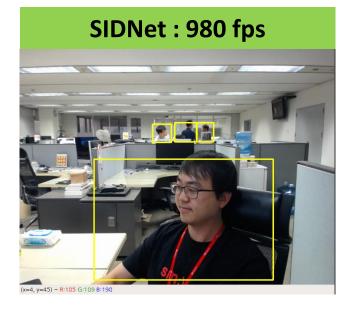
2.1x faster

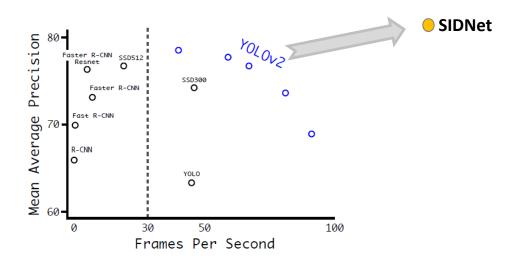


Conclusion



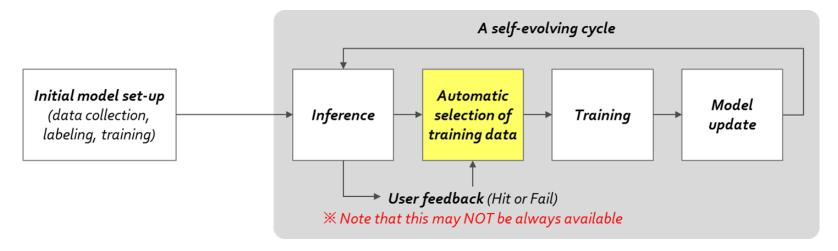






Future works

Online Incremental Learning for Individual Cameras



Jetson TX based Deep Learning Inference for Front-end Devices (Camera, etc.)

