VOLTA Architecture and performance optimization

Guillaume Thomas-Collignon
Paulius Micikevicius
AGENDA

Little’s law
Control flow, Threads are Threads
Instructions, Tensor Cores
Memory Architecture, L1, Smem
VOLTA V100

Per Streaming Multiprocessor:
- 64 FP32 lanes
- 32 FP64 lanes
- 64 INT32 lanes
- 16 SFU lanes (transcendentals)
- 32 LD/ST lanes (Gmem/Lmem/Smem)
- 8 Tensor Cores
- 4 TEX lanes
Little’s Law
For Escalators

Our escalator parameters:

• 1 Person per step
• A step arrives every 2 seconds **Bandwidth**: 0.5 person/s
• 20 steps tall **Latency** = 40 seconds
Little’s Law
For Escalators

- One person in flight?
 Achieved bandwidth = 0.025 person/s

- To saturate bandwidth:
 Need one person arriving with every step,
 we need 20 persons in flight

- Need Bandwidth x Latency persons in flight

A step arrives every 2 seconds
Bandwidth: 0.5 person/s
20 steps tall: Latency = 40 seconds
Little’s law
For GPUs

Optimization goals:

1. **Saturate Compute units**
 Accelerate **computing**
 Get close to the peak performance

2. **Saturate Memory Bandwidth**
 If compute density too low to saturate computation

Need to hide the latencies to achieve this
Memory Bandwidth

Volta reaches 90% of peak bandwidth with ~6KB of data in flight per SM
CUDA basics
Blocks of threads, warps

• Single Instruction Multiple Threads (SIMT) model
• CUDA hierarchy: Grid -> Blocks -> Threads
• One warp = 32 threads.
• Why does it matter?
 Many optimizations based on behavior at the warp level
CUDA basics

Mapping threads

- **Thread blocks can be 1D, 2D, 3D**
 Only for convenience. HW “looks” at threads in 1D

- **Consecutive 32 threads** belong to the same *warp*
CUDA basics
Mapping threads

- **Thread blocks can be 1D, 2D, 3D**
 Only for convenience. HW “looks” at threads in 1D

- **Consecutive 32 threads** belong to the same **warp**

80 Threads:
- 40 threads in X
- 2 rows of threads in Y

3 warps (96 threads)
- 16 inactive threads in 3rd warp
CUDA basics

Control Flow

• Different warps can execute different code
 No impact on performance
 Each warp maintains its own Program Counter

• Different code path inside the same warp?
 Threads that don’t participate are masked out,
 but the whole warp executes both sides of the branch
A;
if(threadIdx.y == 0)
 B;
else
 C;
D;

Warp 1 ...
 0 31
Warp 2 ...
 0 31
Warp 3 ...
 0 31
A;
if(threadIdx.y==0)
 B;
else
 C;
D;
A;
if(threadIdx.y==0)
 B;
else
 C;
D;
Control Flow

```
A;
if(threadIdx.y==0)
  B;
else
  C;
D;
```
A;
if(threadIdx.y==0)
 B;
else
 C;
D;

Instructions, time
A;
if(threadIdx.y==0)
 B;
else
 C;
D;

Control Flow

A B D
Warp 1
... 0 31
Warp 2
0 0 31
Warp 3
0 0 31
A;
if(threadIdx.y==0)
 B;
else
 C;
D;

Control Flow
Control Flow

A;
if(threadIdx.y==0)
 B;
else
 C;
D;

A B D

A B C D

Instructions, time

Warp 1
Warp 2
Warp 3
A;
if(threadIdx.y == 0)
 B;
else
 C;
D;
A;
if(threadIdx.y==0)
 B;
else
 C;
D;
A;
if(threadIdx.y==0)
 B;
else
 C;
D;
Control Flow

Takeaways

- Minimize thread divergence inside a warp
- Divergence between warps is fine
- Maximize “useful” cycles for each thread
Threads Are Threads
New in Volta

- **Program counter:**
 Before Volta: Per warp
 Volta: Per thread

- Volta guarantees **Forward Progress** for diverged threads in a warp

- Allows to exchange data between diverged threads in a warp. E.g. mutexes among warp threads.
 Allows to write natural code that would deadlock before
Threads Are Threads

Example

```c
lock = 0;
while (lock == 0)
    lock = tryGetLock();
doSomething;
releaseLock();
```

Pre-Volta: The code might deadlock in the loop, if the thread that gets the lock cannot forward-progress and release the lock

These device functions could be implemented with atomics, or volatile pointers
Threads are Threads

Thread re-convergence

- **Don’t assume** the threads in a warp are re-converged or executing in lock-step mode.
 Use `__syncwarp()` to synchronize the threads in a warp.

- Shuffle and warp vote functions are deprecated. Use the new equivalent “_sync” functions.
 Extra parameter tells the compiler/HW which threads are expected to participate, because they might not reach it all at the same time.
 E.g: `__shfl_up(value, 1)` becomes `__shfl_up_sync(0xffffffff, value, 1)`

- Full efficiency only when all the 32 threads of a warp are converged!
Thread are Threads
How to deal with warp-synchronous code?

• Update/fix the code!
• Use **Cooperative Groups** (GTC 2017 talk s7622)
• Compile for an older architecture (disable forward progress)
 - arch=compute_60,sm_70 (binary)
 - arch=compute_60 (PTX JIT)
SM Resources

Each thread block needs:

Registers (#registers/thread x #threads)

Shared memory (0 ~ 96 KB)

Volta limits per SM:

256KB Registers
96KB Shared memory
2048 threads max (64 warps)
32 thread blocks max

Can schedule any resident warp without context switch
SM Resources

Each thread block needs:

Registers \((\text{#registers/thread} \times \text{#threads})\)

Shared memory \((0 \sim 96 \text{ KB})\)

Volta limits per SM:

- 256KB Registers
- 96KB Shared memory
- 2048 threads max (64 warps)
- 32 thread blocks max

Can schedule any resident warp without context switch
Occupancy

\[
\text{Occupancy} = \frac{\text{Achieved number of threads per SM}}{\text{Maximum number of threads per SM}}
\]

(Use the occupancy calculator XLS in CUDA Toolkit)

Higher occupancy can help to hide latency!
SM has more warp candidates to schedule while other warps are waiting for instructions to complete

Achieved occupancy vs theoretical occupancy
Need to run enough thread blocks to fill all the SMs!
Increasing In-Flight instructions

2 Ways to improve parallelism:

• **Improve occupancy**
 More threads -> more instructions

• **Improve instruction parallelism (ILP)**
 More independent instructions per thread
Instruction Issue

Instructions are issued in-order

If an instruction is not eligible, it stalls the warp

An instruction is eligible for issue if both are true:

• A pipeline is available for execution
 Some pipelines need multiple cycles to issue a warp

• All the arguments are ready
 Argument isn’t ready if a previous instruction hasn’t yet produced it
Instruction Issue Example

```c
__global__ void kernel (float *a, float *b, float *c) {
    int i = blockIdx.x * blockDim.x + threadIdx.x;
    c[i] += a[i] * b[i];
}
```

![Instruction Issue Example Diagram](image)
Computing 2 values per thread

```c
__global__ void kernel (float2 *a, float2 *b, float2 *c) {

    int i = blockIdx.x * blockDim.x + threadIdx.x;

    c[i].x += a[i].x * b[i].x;
    c[i].y += a[i].y * b[i].y;
}
```

```
LDG.E.64 R2, [R2];
LDG.E.64 R4, [R4];
LDG.E.64 R6, [R8];

FFMA R7, R3, R5, R7;
FFMA R6, R2, R4, R6;

STG.E.64 [R8], R6;
```

2 Independent instructions

24B/ thread in flight

stall!

stall!
Fast Math intrinsics

Fast but less accurate math intrinsics are available.
2 ways to use the intrinsics:

- **Whole file**: compile with --fast-math
- **Individual calls**
 - E.g. __sinf(x), __logf(x), __fdivide(x,y)
Tensor Cores
New in Volta

125 Tflops Peak

Matrix Multiplication Pipeline, half precision inputs

Used in CUBLAS, CUDNN, CUTLASS*
 Optimized libraries can reach ~90% of peak

Exposed in CUDA 9.1 (preview feature)

*(more info on CUTLASS at GTC 2018 session SS8854)
Tensor Cores
Using Tensor Cores in your CUDA code

WMMA warp-wide macro-instructions
All threads in the warp must be active!

Performs matrix multiplication on 16x16 tiles
(8x32x16 and 32x8x16 tiles also available)

\[D = A \times B + C \]

A and B: FP16 only
C and D: Same, either FP16 or FP32.
Tensor Cores

Typical use

Each warp processes a 16x16 output tile

Each warp:
Loop on all input tiles A_k and B_k
$C = C + A_k \times B_k$
Write the output tile
Tensor Cores

Typical use

Each warp processes a 16x16 output tile

Each warp:
Loop on all input tiles A_k and B_k
$C = C + A_k \times B_k$
Write the output tile

Can compute several tiles per threadblock, with inputs staged in shared memory
Volta’s Memory System

V100

80 Symmetric Multiprocessors
256KB register file (20 MB)

Unified Shared Mem / L1 Cache
128KB, Variable split
(~10MB Total, 14 TB/s)

6 MB L2 Cache
(2.5TB/s Read, 1.6TB/s Write)

16/32 GB HBM2 (900 GB/s)
“Free” ECC.
Cache Lines & Sectors
Moving data between L1, L2, DRAM

Memory access granularity = **32 Bytes = 1 sector**
(32B for Maxwell, Pascal, Volta. Kepler and before: variable, 32B or 128B, depending on architecture, access type, caching / non-caching options)

A **cache line is 128 Bytes**, made of **4 sectors**.
Cache ”management” granularity = 1 cache line

128-Byte alignment

128 Byte cache line

<table>
<thead>
<tr>
<th>Sector 0</th>
<th>Sector 1</th>
<th>Sector 2</th>
<th>Sector 3</th>
</tr>
</thead>
</table>

Memory Reads
Getting data from Global Memory

Checking if the data is in L1 (if not, check L2)
Checking if the data is in L2 (if not, get in DRAM)

Unit of data moved: Sectors
Memory Writes

Before Volta: Writes were not cached in L1.
New in Volta: L1 will cache writes.
L1 is write-through: Write to L1 AND L2.

L2 is write back: Will flush data to DRAM only when needed.

Partial writes are supported (masked portion of sector, but behavior can change with ECC on/off).

Instruction modifiers can influence cache behavior (inline PTX only)
L1, L2 Caches
Why do GPU have caches?

In general, not for cache blocking

- 100s ~ 1000s of threads running per SM. Tens of thousands of threads sharing the L2 cache. L1, L2 are small per thread. E.g. at 2048 threads/SM, with 80 SMs: 64 bytes L1, 38 Bytes L2 per thread. Running at lower occupancy increases bytes of cache per thread

- Shared Memory is usually a better option to cache data explicitly: User managed, no evictions out of your control.
L1, L2 Caches
Why do GPU have caches?

Caches on GPUs are useful for:

- “Smoothing” irregular, unaligned access patterns
- Caching common data accessed by many threads
- Faster register spills, local memory
- Fast atomics
- Codes that don’t use shared memory (naïve code, OpenACC, ...
Access Patterns
Warps and Sectors

For each warp: How many sectors needed?
Depends on addresses, active threads, access size.
Natural element sizes = 1B, 2B, 4B, 8B, 16B.

4-Byte element access
4 sectors

Memory Addresses
Access Patterns
Warps and Sectors

Examples of 8-byte elements: long long, int2, double, float2
Access Patterns

Warps and Sectors

Memory Addresses

4-Byte access
4 sectors
Access Patterns

Warp and Sectors

4-Byte access, unaligned 5 sectors

0 to 31 sectors

128 bytes requested, 160 bytes read (80% efficiency)
Access Patterns
Warp and Sectors

4-Byte access, unaligned 5 sectors

0 32 64 96 128 160 192 224 256 288 320 352

With >1 warp per block, this sector might be found in L1 or L2
Access Patterns

Warp and Sectors

4-Byte strided access
32 sectors

Memory Addresses

128 bytes requested, 1024 bytes transferred!
Using only a few bytes per sector. Wasting lots of BW!
Access Patterns

Takeaways

• Know your access patterns
• Use the profiler (metrics, counters) to check how many sectors are moved. Is that what you expect? Is it optimal?
• Using the largest type possible (e.g. float4) will maximize the number of sectors moved per instruction
Shared Memory

Scratch-pad memory on each SM
User-managed cache, HW does not evict data
Data written to SMEM stays there till user overwrites

Useful for:
Storing frequently-accessed data, to reduce DRAM accesses
Communication among threads of a threadblock

Performance benefits compared to DRAM:
20-40x lower latency
~15x higher bandwidth
Accessed at 4-byte granularity
GMEM granularity is 32B.
Volta Shared Memory

- Default 48KB/threadblock, opt in to get 96KB
- 32 banks, 4 bytes wide
 - Bandwidth: 4 bytes per bank per clock per SM
 - 128 bytes per clk per SM
 - V100: ~14 TB/s aggregate across 80 SMs

- Mapping addresses to banks:
 - Successive 4-byte words go to successive banks
 - Bank index computation examples:
 - $(4B \text{ word index}) \mod 32$
 - $(((1B \text{ word index}) \div 4) \mod 32$
 - 8B word spans two successive banks
Logical View Of SMEM Banks

With 4-Bytes data
Shared Memory Instruction Operation

Threads in a warp provide addresses
 HW determines into which 4-byte words addresses fall

Reads (LDS):
 Fetch the data, distribute the requested bytes among threads
 Multi-cast capable

Writes (STS):
 Multiple threads writing the same address: one “wins”
Shared Memory Bank Conflicts

A bank conflict occurs when, inside a warp:
2 or more threads access within different 4B words in the same bank
Think: 2 or more threads access different “rows” in the same bank

N-way bank conflict: *N* threads in a warp conflict
- Increases latency
- Worst case: 32-way conflict → 31 replays
- Each replay adds a few cycles of latency

There is no bank conflict if:
- Several threads access the same 4-byte word
- Several threads access different bytes of the same 4-byte word
No Bank Conflicts
No Bank Conflicts
No Bank Conflicts
No Bank Conflicts

Byte-address: 0 4 8 12 16 20 24 28 32 36 40 44

T-0 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10

Bank-0 Bank-1

T-30 T-31

Bank-31
2-way Bank Conflict

Byte-address: 0 1 8 12 16 20 24 28 32 36 40 44

Bank-0

Bank-1

Bank-31
2-way Bank Conflict

Byte-address: 0 4 8 12 16 20 24 28 32 36 40 44

0 1 2 3 4 5 6 7 8 9 10

32 33

Bank-0 Bank-1

T-0 T-1 T-2 T-3 T-4 T-5 T-6 T-7 T-8 T-9 T-10

T-30 T-31

120 124 128

Bank-31
3-way Bank Conflict
Bank Conflict Resolution

4B or smaller words:
- Process addresses of all threads in a warp in a single phase

8B words are accessed in 2 phases:
- Process addresses of the first 16 threads in a warp
- Process addresses of the second 16 threads in a warp

16B words are accessed in 4 phases:
- Each phase processes a quarter of a warp

Bank conflicts occur only between threads in the same phase
8B words, No Conflicts
8B words, 2-way Conflict

Phase 1
(2 way conflict)

Phase 2
(no conflict)
Case Study: Matrix Transpose

Staged via SMEM to coalesce GMEM addresses

- 32x32 threadblock, single-precision values
- 32x32 array in shared memory

Initial implementation:

A warp reads a row from GMEM, writes to a row of SMEM

Synchronize the threads in a block

A warp reads a column of from SMEM, writes to a row in GMEM
Case Study: Matrix Transpose

32x32 SMEM array (e.g. __shared__ float sm[32][32])

Warp accesses a row: No conflict

Warp accesses a column: 32-way conflict

Number identifies which warp is accessing data
Color indicates in which bank data resides

Bank 0
Bank 1
...
Bank 31
Case Study: Matrix Transpose

Solution: add a column for padding: 32×33
(e.g. `__shared__ float sm[32][33]`)

Warp accesses a row or a column: no conflict

Number identifies which warp is accessing data
Color indicates in which bank data resides

Bank 0
Bank 1
...
Bank 31

Threads:

```
0 1 2
0 1 2
31
```

Speedup 1.3x
Summary: Shared Memory

Shared memory is a tremendous resource

- Very high bandwidth (14 TB/s)
- Much lower latency than Global Memory
- Data is programmer-managed, no evictions by hardware
- Volta: up to 96KB of shared memory per thread block.

Performance issues to look out for:

- Bank conflicts add latency and reduce throughput
- Use profiling tools to identify bank conflicts
Volta’s L1 Cache
Pascal vs Volta

Pascal : 24KB
Achievable BW = 2.6 TB/s

Volta : Variable size 32 KB ~ 128KB
Achievable BW = 14.4 TB/s
Lower latency!

L1 caching: Global Mem, Texture, Local Mem (inc. register spills)
Volta’s Unified L1

How to specify the L1 / Smem split on Volta:
cudaFuncSetAttribute (MyKernel, cudaFuncAttributePreferredSharedMemoryCarveout, carveout);

The driver usually does a pretty good job at choosing the right split.
2D Stencil Experiment
with and without Shared Memory

```c
index = iy * nx + ix;
res = coef[0] * in[index];
for(i=1; i<=RADIUS; i++)
    res += coef[i] * (in[index-i] +
                      in[index+i] +
                      in[index-i*n1] +
                      in[index+i*n1]);
out[index] = res;
```

With Shared Memory:
- Load the input array and halos in shared memory
- `__syncthreads()`
- Compute the stencil from the shared memory
2D - Small stencils

Relative speed of L1 implementation versus Smem implementation

RADIUS=1
- Volta: 103%
- Pascal: 78%

RADIUS=2
- Volta: 102%
- Pascal: 55%

L1 implementation is faster than Shared Memory on Volta!
2D - Larger Stencils

Relative speed of L1 implementation versus Smem implementation

<table>
<thead>
<tr>
<th>RADIUS</th>
<th>Volta</th>
<th>Pascal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>94%</td>
<td>40%</td>
</tr>
<tr>
<td>8</td>
<td>95%</td>
<td>32%</td>
</tr>
<tr>
<td>16</td>
<td>79%</td>
<td>29%</td>
</tr>
</tbody>
</table>

Shared Memory implementation is always faster for larger stencils
Constant Memory

- Globally-scoped arrays qualified with `__constant__`
- Total constant data size limited to 64 KB
- Throughput = 4B per clock per SM (ideal if entire warp reads the same address)
- Can be used directly in arithmetic instructions (saving registers)
- Example use: Stencil coefficients
Running Faster
Solving the bottlenecks

A piece of code can be:

- **Compute bound** (saturating compute units)
 Solution: Reduce the number of instructions executed
 Using vector types, intrinsics, tensor cores, FMAs

- **Bandwidth bound** (saturating memory bandwidth)
 Solution: Reduce the amount of data transferred
 Optimal access patterns, using lower precision

- **Latency bound**
 Solution: Increase the number of instructions / mem accesses in flight