Tofu: Parallelizing Deep Learning Systems with Automatic Tiling

Minjie Wang

Deep Learning

"Deep Learning" trend in the past 10 years

State-of-art DL system is based on dataflow

```
import tensorflow as tf
... # generate data and weight
act1 = tf.matmult(data, w1)
act2 = tf.matmult(act1, w2)
...
grad_act2 = tf.matmult(w3.T, grad_act3)
grad_act1 = tf.matmult(w2.T, grad_act2)
...
grad_w2 = tf.matmult(act1.T, grad_act2)
grad_w1 = tf.matmult(data.T, grad_act1)
... # update weights using gradients
```


What if I have many GPUs?

Data parallelism with manual distribution

Manual Distribution & Device assignment

Scalability secret of data parallelism

Training: NVIDIA® Tesla® K80 synthetic data (1,8,16,32, and 64)

* Numbers from https://www.tensorflow.org/performance/benchmarks

Large batch size harms model accuracy

Validation Accuracy

Inception Network on Cifar-10 dataset

Data parallelism bottlenecked by communication

An alternative way: Model Parallelism

Forward propagation

Backward propagation (input gradients)

MP is hard to program

	······································		
2	<pre>def model_par_mlp(data, weights):</pre>		
3	# Partition weights on row.		
4	W = []		
5	<pre>for i in xrange(FLAGS.num_layers):</pre>		
6	w.append([])		
7	<pre>for j in xrange(FLAGS.num_workers):</pre>		
8	<pre>with tf.device('/job:worker/task:%d' % j):</pre>		
9	w[i].append(tf.get_variable(
10	name='w%d' % j,		
11	<pre>shape=[slice_size,feature_size],</pre>		
12	trainable=True))		
13	# Forward Propagation.		
14	fwd = []		
15	last = data		
16	<pre>for i in xrange(FLAGS.num_layers):</pre>		
17	<pre>with tf.name_scope('fc_ff%d' % i):</pre>		
18	fwd.append(last)		
19	tmp = []		
20	<pre>for j in xrange(FLAGS.num_workers):</pre>		
21	<pre>with tf.device('/job:worker/task:%d' % j):</pre>		
22	<pre>y = tf.matmul(last[j], w[i][j]) # forward matmult</pre>		
23	# split the result so we can do balanced reduction.		
24	<pre>tmp.append(tf.split(split_dim=1, num_split=FLAGS.num_workers, value=y)</pre>		
25	# Reduce the result.		
26	red = []		
27	<pre>for j in xrange(FLAGS.num_workers):</pre>		
28	<pre>with tf.device('/job:worker/task:%d' % j):</pre>		
29	<pre>red.append(tf.accumulate_n([s[j] for s in tmp]))</pre>		
30	last = red		
31	# Backward Propagation.		
32	targets = []		
33	<pre>for i in reversed(xrange(FLAGS.num_layers)):</pre>		
34	<pre>with tf.name_scope('fc_bp%d' % i):</pre>		
35	<pre># Concatenate input tensors.</pre>		
36	tmp = []		
37	<pre>for j in xrange(FLAGS.num_workers):</pre>		
38	<pre>with tf.device('/job:worker/task:%d' % j):</pre>		
39	<pre>tmp.append(tf.concat(concat_dim=1, values=last))</pre>		
40	last = []		
41	<pre>for j in xrange(FLAGS.num_workers):</pre>		
42	<pre>with tf.device('/job:worker/task:%d' % j):</pre>		
43	<pre>dy = tf.matmul(tmp[j], w[i][j], transpose_b=True) # matmult: bp</pre>		
44	last.append(dy)		
45	<pre>dw = tf.matmul(fwd[i][j], tmp[j], transpose_a=True) # matmult: grad</pre>		
46	targets.append(dw) # update		
47	return targets		

1 # Manual Model Parallelism implementation for a MIP network

What is the best strategy for distribution?

- No one-size-fits-all
 - DP and MP suit different situations (parameter shapes, batch sizes).
 - Different layers might be suited for different strategies (hybrid parallelism).
 - Use data parallelism for convolution layers; use model parallelism for fullyconnected layers.
- DP and MP can be combined in a single layer
 - DistBelief (Dean, 2012)
 - Impossible to program with manual distributed strategy!

Tofu automatically distributes DL training

Challenges

- What are the different ways to distribute each tensor operator?
- What is the globally optimal way of distribution
 - that minimizes communication?

Different ways of distributing matrix multiplication

- Activation Matrix (lower layer) is row-partitioned
- Weight Matrix is replicated
- > Acitvation Matrix (higher layer) is row-partitioned
- Data parallelism

Different ways of distributing matrix multiplication

- > Activation Matrix (lower layer) is replicated
- Weight Matrix is column-partitioned
- Acitvation Matrix (higher layer) is column-

partitioned

Model Parallelism

Operators can have different strategies

...

• Different matrix multiplications may choose different strategies.

Operators can have different strategies

• No communication if the output matrix satisfies the input partition.

Operators can have different strategies

• Communication happens when matrices need to be re-partitioned.

Communication Cost

- Communication happens when matrices need to be re-partitioned.
- Communication cost == partition conversion cost.

Finding optimal strategy with minimal communication

- Each operator has several distribution decisions.
 - DP and MP are one of them.
- Looking at one operator at a time is **not** optimal.
- Finding strategy with minimal communication cost for a general graph is NP-Complete.
- <u>Tofu finds optimal strategy for deep learning in polynomial time</u>:
 - "Layer-by-layer" propagations \rightarrow graph with long diameter.
 - Use dynamic programming algorithm to find optimal strategy.

Combined strategies for one operator

Combined strategy is sometimes better

- Fully-connected layer of 500 neurons with batch size 300.
- One combined strategy on 16 GPUs:
 - Model parallelism into 4 groups of GPUs (each group has 4 GPUs).
 - Data parallelism within each group.
 - Saves >33.3% communications than DP and MP.

Find combined strategies

- Solve the problem recursively.
- Proved to be optimal.

Step 1: Partition to two groups

Step 2: Apply the algorithm again on one of the group

Step 3: Apply the same strategy to the other group due to symmetry.

Tofu Evaluation Setup

- Implemented in MXNet's NNVM dataflow optimization library.
- Multi-GPU evaluation
 - Amazon p2.8xlarge instance
 - 8 NVIDIA GK210 GPUs (4 K80)
 - 12GB memory per card
 - Connected by PCI-e (160Gbps bandwidth)

Under submission. Contact <u>wmjlyjemaine@gmail.com</u> for more details.

Communication Overhead Evaluation

- Per batch running time of a 4-layer MLP for DP and Tofu.
- Hidden layer size: 8192; Batch size: 512

Real Deep Neural Networks Evaluation

• Experimental setup: 1 machine, 8 cards.

Recap

- Data parallelism suffers from *batch-size-dilemma*.
- Other parallelisms exist but are hard to program.
 - Model parallelism, hybrid parallelism, combined parallelism, etc.
- Tofu automatically parallelizes deep learning training
 - Figure out distributed strategies for each operator.
 - Combine strategies recursively.
 - Proved to have least communication cost.

Q & A

One-cut Tiling Algorithm

- Given a dataflow graph *G*, find \mathcal{T}_{min} : $M_G \mapsto \{R,C,r\}$ such that the communication cost of *all* matrix multiplications are minimized.
- Case #1:

$$XW_0W_1\dots W_n=Y$$

One-cut Tiling Algorithm

• Case #2:

$$XW_0W_1 \dots W_n = Y$$
$$dX = YW_n^T W_{n-1}^T \dots W_0^T$$

Dynamic Programming

One-cut Tiling Algorithm

- Organize nodes in the dataflow graph into levels, such that for any node, **all** its neighbors are contained in the adjacent levels.
- BFS is one way to produce such levels.
- Dynamic Programming:

Initial condition:

$$g_0(\tau_0) = \text{level}_{\text{cost}_0}(\phi, \tau_0)$$

DP equation $(l \ge 1)$:

$$g_{l}(\tau_{l}) = \min_{\tau_{l-1}} \{ \text{level_cost}_{l}(\tau_{l-1}, \tau_{l}) + g_{l-1}(\tau_{l-1}) \}$$

Which One is Better?

500 * 500 * 2 = 500K <u>Activation (gradients) size:</u> 500 * 300 * 2 = 300K ✓ Data Parallelism

- 500K * 2 * 4B * 16 = 64MB
- ✓ Model Parallelism
 - 300K * 2 * 4B * 16 = 38.4MB

✓ Hybrid Parallelism

- 4 groups of GPUs, each group has 4 GPUs
- Model Parallelism among groups
 - 300K * 2 * 4B * 4 = 9.6MB
- Data Parallelism within each group
 - 500K / 4 * 2 * 4B * 4 = 4MB
- 9.6MB + 4 * 4MB = 25.6MB
- Save 33.3% communications!

Single Card Different Tilings

- Per batch running time for a 4-layers MLP network.
- Hidden layer size: 8192
- Partition dataflow to 8 workers but put them on the same GPU.

Batch Size	Single GPU	Single GPU w/ Tofu partitions
512	0.31s	0.19s
1024	0.56s	0.39s
2048	1.13s	0.73s

Multi-language support \checkmark

 \checkmark

- Flexible interface
- Debug & visualization \checkmark

Construct Parallel Execution Graph

• Three-phase computation

Execution dataflow

Construct Parallel Execution Graph

• Dataflow graph for tiling conversion.

