
Tofu: Parallelizing Deep Learning Systems with

Automatic Tiling

Minjie Wang

Deep Learning

“Deep Learning” trend in the past 10 years

Caffe

GPU#0

State-of-art DL system is based on dataflow

data

w1 w2

…

g1 g2

Forward propagation

Backward propagation (input gradients)

Backward propagation (weight gradients)

What if I have many GPUs?

Data parallelism with manual distribution

…data

w1 w2

g1 g2

GPU#0

GPU#1

compute_grad

data split

weights

compute_grad grad

sum

GPU#0

Parameter Server

Manual Distribution &

Device assignment

Scalability secret of data parallelism

Valid batch size = 64 * 64 = 4096

* Numbers from https://www.tensorflow.org/performance/benchmarks

Large batch size harms model accuracy

Inception Network on Cifar-10 dataset

Data parallelism bottlenecked by communication

5-layer MLP; Hidden Size = 8192; Batch Size = 512

>80% of the total

running time is for

communication on

8 cards

GPU#1

GPU#0

An alternative way: Model Parallelism

…data

w1 w2

Forward propagation

Backward propagation (input gradients)

…data

w1

w1’

split

split Concat

Concatdata … split

split Concat

Concat

w2

w2’

MP is hard to program

What is the best strategy for distribution?

• No one-size-fits-all

– DP and MP suit different situations (parameter shapes, batch sizes).

– Different layers might be suited for different strategies (hybrid

parallelism).

• Use data parallelism for convolution layers; use model parallelism for fully-

connected layers.

• DP and MP can be combined in a single layer

– DistBelief (Dean, 2012)

– Impossible to program with manual distributed strategy!

Tofu automatically distributes DL training

User

Program

Semantic

Dataflow

Graph

Distributed

Strategy with least

communication

Execution

Parallel

Execution

Graph

Tofu

Automatic

Conversion

Challenges

• What are the different ways to distribute each tensor operator?

• What is the globally optimal way of distribution

– that minimizes communication?

Different ways of distributing matrix multiplication
500

500

500

500
500

3
0
0

5
0
0

3
0
0

Batch size: 300

GPU#1

GPU#0

×

× =

= ➢ Activation Matrix (lower layer) is row-partitioned

➢ Weight Matrix is replicated

➢ Acitvation Matrix (higher layer) is row-partitioned

➢ Data parallelism

Different ways of distributing matrix multiplication
500

500

500

500
500

3
0
0

5
0
0

3
0
0

Batch size: 300

GPU#1

GPU#0

×

× =

=
➢ Activation Matrix (lower layer) is replicated

➢ Weight Matrix is column-partitioned

➢ Acitvation Matrix (higher layer) is column-

partitioned

➢ Model Parallelism

Operators can have different strategies

• Different matrix multiplications may choose different strategies.

500

500

500
Matmult#1 Matmult#2

Operators can have different strategies

• No communication if the output matrix satisfies the input partition.

500

500

500
Matmult#1 Matmult#2

× = × =

No Communication!

Operators can have different strategies

• Communication happens when matrices need to be re-partitioned.

500

500

500
Matmult#1 Matmult#2

× =

Communication Cost

• Communication cost == partition conversion cost.

C R

• Communication happens when matrices need to be re-partitioned.

Finding optimal strategy with minimal communication

• Each operator has several distribution decisions.

– DP and MP are one of them.

• Looking at one operator at a time is not optimal.

• Finding strategy with minimal communication cost for a general

graph is NP-Complete.

• Tofu finds optimal strategy for deep learning in polynomial time:

– “Layer-by-layer” propagations graph with long diameter.

– Use dynamic programming algorithm to find optimal strategy.

Combined strategies for one operator
500

500

500

500
500

3
0
0

5
0
0

3
0
0 Batch size: 300

Combined strategy is sometimes better

• Fully-connected layer of 500 neurons with batch size 300.

• One combined strategy on 16 GPUs:

– Model parallelism into 4 groups of GPUs (each group has 4 GPUs).

– Data parallelism within each group.

– Saves >33.3% communications than DP and MP.

Find combined strategies

• Solve the problem recursively.

• Proved to be optimal.

𝛿1

Step 1: Partition to two groups

𝛿2

Step 2: Apply the algorithm

again on one of the group

Step 3: Apply the same

strategy to the other group

due to symmetry.

𝛿2

𝛿2

𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿1 + 2𝛿2

Tofu Evaluation Setup

• Implemented in MXNet’s NNVM dataflow optimization library.

• Multi-GPU evaluation

– Amazon p2.8xlarge instance

– 8 NVIDIA GK210 GPUs (4 K80)

– 12GB memory per card

– Connected by PCI-e (160Gbps bandwidth)

Under submission. Contact wmjlyjemaine@gmail.com for more details.

mailto:wmjlyjemaine@gmail.com

Communication Overhead Evaluation

• Per batch running time of a 4-layer MLP for DP and Tofu.

• Hidden layer size: 8192; Batch size: 512

Real Deep Neural Networks Evaluation

• Experimental setup: 1 machine, 8 cards.

Tofu’s tiling for VGG-19 on 8 GPUs

Data Parallelism

Hybrid Parallelism

• 8 GPUs into 4 groups

• Data parallelism among groups

• Model parallelism within each group (tile on channel)

Model Parallelism

• Tile on both row and column for weight matrices

Batch Size: 64

Recap

• Data parallelism suffers from batch-size-dilemma.

• Other parallelisms exist but are hard to program.

– Model parallelism, hybrid parallelism, combined parallelism, etc.

• Tofu automatically parallelizes deep learning training

– Figure out distributed strategies for each operator.

– Combine strategies recursively.

– Proved to have least communication cost.

Q & A

One-cut Tiling Algorithm

• Given a dataflow graph 𝐺, find 𝒯𝑚𝑖𝑛:𝑀𝐺 ↦ {R,C,r} such that the

communication cost of all matrix multiplications are minimized.

• Case #1:

𝑋𝑊0𝑊1…𝑊𝑛 = 𝑌

…X

W0 W1 Wn

Y

Dynamic Programming

One-cut Tiling Algorithm

• Case #2:

𝑋𝑊0𝑊1…𝑊𝑛 = 𝑌
𝑑𝑋 = 𝑌𝑊𝑛

𝑇𝑊𝑛−1
𝑇 …𝑊0

𝑇

…X

W0 W1 Wn-1

Y

Dynamic Programming

Wn

…dX

One-cut Tiling Algorithm

• Organize nodes in the dataflow graph into levels, such that for any

node, all its neighbors are contained in the adjacent levels.

• BFS is one way to produce such levels.

• Dynamic Programming:

Which One is Better?

500

500

500

w1

w2

nGPUs: 16
Batch size: 300

Parameter (gradients) size:
500 * 500 * 2 = 500K

Activation (gradients) size:
500 * 300 * 2 = 300K

ToyNet Configuration
✓ Data Parallelism

• 500K * 2 * 4B * 16 = 64MB

✓ Model Parallelism
• 300K * 2 * 4B * 16 = 38.4MB

✓ Hybrid Parallelism
• 4 groups of GPUs, each group has 4 GPUs

• Model Parallelism among groups
• 300K * 2 * 4B * 4 = 9.6MB

• Data Parallelism within each group
• 500K / 4 * 2 * 4B * 4 = 4MB

• 9.6MB + 4 * 4MB = 25.6MB

• Save 33.3% communications!

Single Card Different Tilings

• Per batch running time for a 4-layers MLP network.

• Hidden layer size: 8192

• Partition dataflow to 8 workers but put them on the same GPU.

Efficiency

FlexibilityPortability

✓ Fast GPU kernels

✓ Parallelism

✓ Fast interconnections

✓ Flexible interface

✓ Debug & visualization

✓ Low memory consumption

✓ Multi-language support

Construct Parallel Execution Graph

• Three-phase computation

Semantic dataflow

Inputs Conversion Phase Computation Phase Outputs Conversion Phase

Execution dataflow

Tiling

Conversion

Tiling

Conversion

Construct Parallel Execution Graph

Shuffle

• Dataflow graph for tiling conversion.

R C
Split Concat

