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Deep Learning

“Deep Learning” trend in the past 10 years

Caffe



GPU#0

State-of-art DL system is based on dataflow
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What if I have many GPUs?



Data parallelism with manual distribution
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Scalability secret of data parallelism

Valid batch size = 64 * 64 = 4096

* Numbers from https://www.tensorflow.org/performance/benchmarks



Large batch size harms model accuracy

Inception Network on Cifar-10 dataset



Data parallelism bottlenecked by communication

5-layer MLP; Hidden Size = 8192; Batch Size = 512

>80% of the total 

running time is for 

communication on 

8 cards



GPU#1

GPU#0

An alternative way: Model Parallelism
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MP is hard to program



What is the best strategy for distribution?

• No one-size-fits-all

– DP and MP suit different situations (parameter shapes, batch sizes).

– Different layers might be suited for different strategies (hybrid 

parallelism).

• Use data parallelism for convolution layers; use model parallelism for fully-

connected layers.

• DP and MP can be combined in a single layer

– DistBelief (Dean, 2012)

– Impossible to program with manual distributed strategy!



Tofu automatically distributes DL training
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Challenges

• What are the different ways to distribute each tensor operator?

• What is the globally optimal way of distribution 

– that minimizes communication?



Different ways of distributing matrix multiplication
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Different ways of distributing matrix multiplication
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➢ Weight Matrix is column-partitioned

➢ Acitvation Matrix (higher layer) is column-
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➢ Model Parallelism



Operators can have different strategies

• Different matrix multiplications may choose different strategies.
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Operators can have different strategies

• No communication if the output matrix satisfies the input partition.
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Operators can have different strategies

• Communication happens when matrices need to be re-partitioned.
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Communication Cost

• Communication cost == partition conversion cost.

C R

• Communication happens when matrices need to be re-partitioned.



Finding optimal strategy with minimal communication

• Each operator has several distribution decisions.

– DP and MP are one of them.

• Looking at one operator at a time is not optimal.

• Finding strategy with minimal communication cost for a general 

graph is NP-Complete.

• Tofu finds optimal strategy for deep learning in polynomial time:

– “Layer-by-layer” propagations  graph with long diameter.

– Use dynamic programming algorithm to find optimal strategy.



Combined strategies for one operator
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Combined strategy is sometimes better

• Fully-connected layer of 500 neurons with batch size 300.

• One combined strategy on 16 GPUs:

– Model parallelism into 4 groups of GPUs (each group has 4 GPUs).

– Data parallelism within each group.

– Saves >33.3% communications than DP and MP.



Find combined strategies

• Solve the problem recursively.

• Proved to be optimal.

𝛿1

Step 1: Partition to two groups

𝛿2

Step 2: Apply the algorithm 

again on one of the group

Step 3: Apply the same 

strategy to the other group 

due to symmetry.

𝛿2

𝛿2

𝛿𝑡𝑜𝑡𝑎𝑙 = 𝛿1 + 2𝛿2



Tofu Evaluation Setup

• Implemented in MXNet’s NNVM dataflow optimization library.

• Multi-GPU evaluation

– Amazon p2.8xlarge instance

– 8 NVIDIA GK210 GPUs (4 K80)

– 12GB memory per card

– Connected by PCI-e (160Gbps bandwidth)

Under submission. Contact wmjlyjemaine@gmail.com for more details.

mailto:wmjlyjemaine@gmail.com


Communication Overhead Evaluation

• Per batch running time of a 4-layer MLP for DP and Tofu.

• Hidden layer size: 8192; Batch size: 512



Real Deep Neural Networks Evaluation

• Experimental setup: 1 machine, 8 cards.



Tofu’s tiling for VGG-19 on 8 GPUs

Data Parallelism

Hybrid Parallelism

• 8 GPUs into 4 groups

• Data parallelism among groups

• Model parallelism within each group (tile on channel)

Model Parallelism

• Tile on both row and column for weight matrices

Batch Size: 64



Recap

• Data parallelism suffers from batch-size-dilemma.

• Other parallelisms exist but are hard to program.

– Model parallelism, hybrid parallelism, combined parallelism, etc.

• Tofu automatically parallelizes deep learning training

– Figure out distributed strategies for each operator.

– Combine strategies recursively.

– Proved to have least communication cost.



Q & A





One-cut Tiling Algorithm

• Given a dataflow graph 𝐺, find 𝒯𝑚𝑖𝑛:𝑀𝐺 ↦ {R,C,r} such that the 

communication cost of all matrix multiplications are minimized.

• Case #1:
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One-cut Tiling Algorithm

• Case #2:
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One-cut Tiling Algorithm

• Organize nodes in the dataflow graph into levels, such that for any 

node, all its neighbors are contained in the adjacent levels.

• BFS is one way to produce such levels.

• Dynamic Programming:



Which One is Better?
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nGPUs: 16
Batch size: 300

Parameter (gradients) size:
500 * 500 * 2 = 500K

Activation (gradients) size:
500 * 300 * 2 = 300K

ToyNet Configuration
✓ Data Parallelism

• 500K * 2 * 4B * 16 = 64MB

✓ Model Parallelism
• 300K * 2 * 4B * 16 = 38.4MB

✓ Hybrid Parallelism
• 4 groups of GPUs, each group has 4 GPUs

• Model Parallelism among groups
• 300K * 2 * 4B * 4 = 9.6MB

• Data Parallelism within each group
• 500K / 4 * 2 * 4B * 4 = 4MB

• 9.6MB + 4 * 4MB = 25.6MB

• Save 33.3% communications!



Single Card Different Tilings

• Per batch running time for a 4-layers MLP network.

• Hidden layer size: 8192

• Partition dataflow to 8 workers but put them on the same GPU.



Efficiency

FlexibilityPortability

✓ Fast GPU kernels

✓ Parallelism

✓ Fast interconnections

✓ Flexible interface

✓ Debug & visualization

✓ Low memory consumption

✓ Multi-language support



Construct Parallel Execution Graph

• Three-phase computation

Semantic dataflow

Inputs Conversion Phase Computation Phase Outputs Conversion Phase

Execution dataflow

Tiling 

Conversion

Tiling 

Conversion



Construct Parallel Execution Graph

Shuffle

• Dataflow graph for tiling conversion.
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