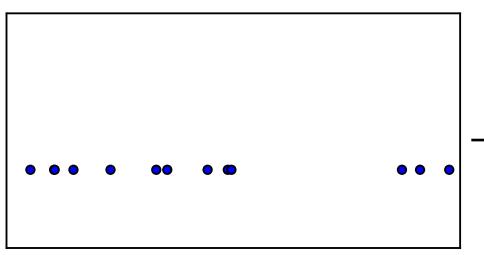
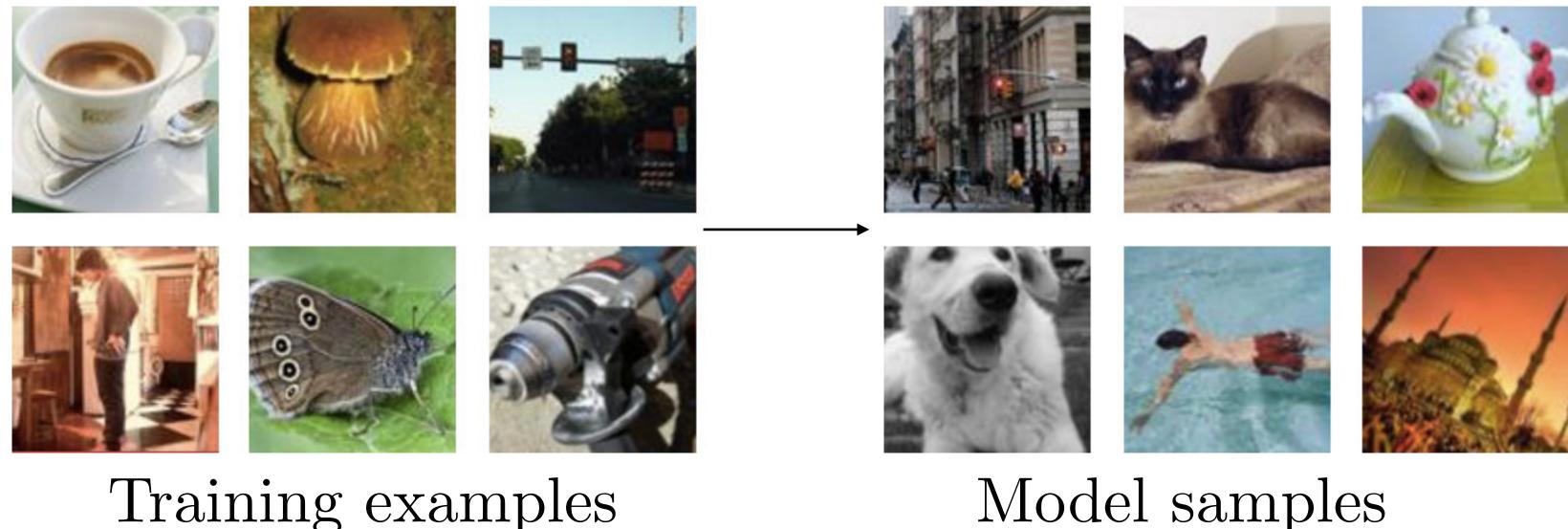
MedGAN ID-CGAN CoGAN LR-GAN CGAN IcGAN b-GAN LS-GAN AffGAN LAPGAN DiscoGANMPM-GAN AdaGAN AMGAN iGAN LSGAN InfoGAN CatGAN Generative Adversarial Networks Ian Goodfellow, Staff Research Scientist, Google Brain MIX+GAN McGAN NVIDIA GPU Technology Conference DR-GAN C-RNN-GAN MGAN San Jose, California 2017-05-09 GoGAN FF-GAN C-VAE-GAN DCGAN AC-GAN CCGAN MAGAN 3D-GAN BiGAN DualGAN GAWWN CycleGAN **GP-GAN Bayesian GAN** AnoGAN EBGAN DTN ALI MARTA-GAN f-GAN A++ MAD-GAN AL-CGAN MalGAN BEGAN ArtGAN

Generative Modeling

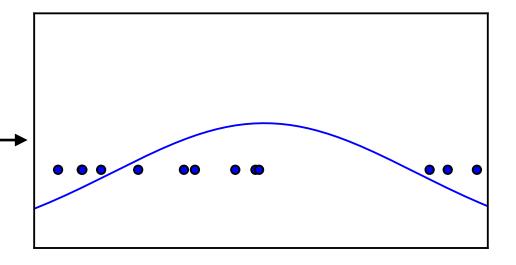
• Density estimation



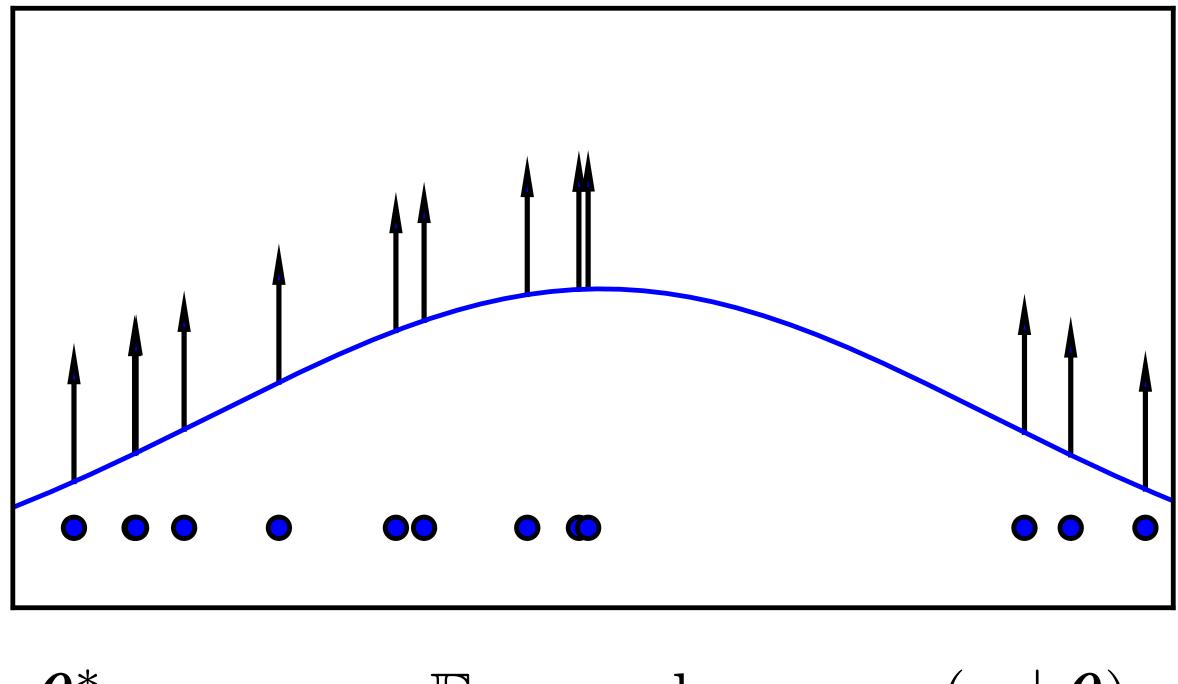
• Sample generation



Training examples

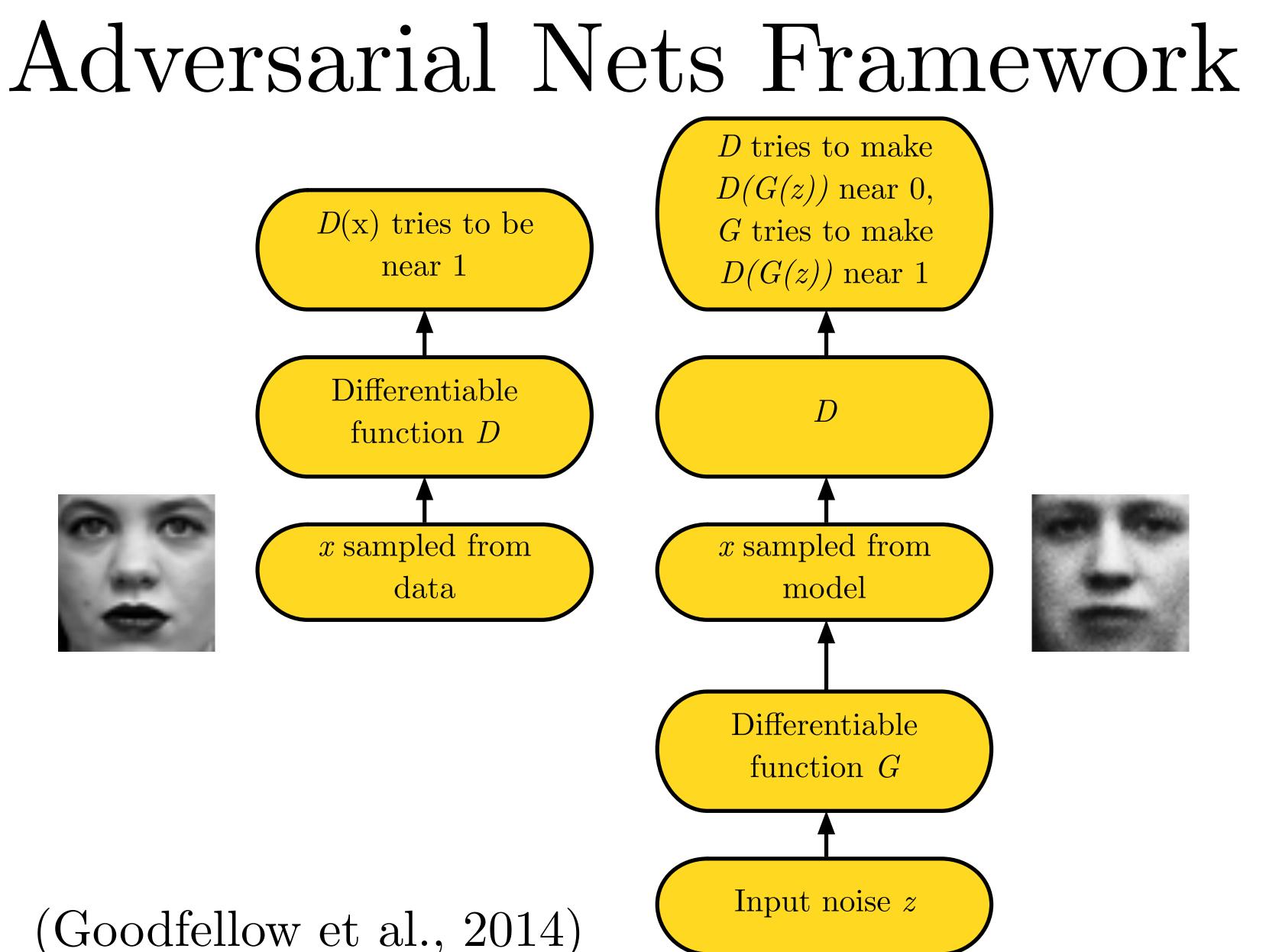


Maximum Likelihood



θ

 $\boldsymbol{\theta}^* = rg \max \mathbb{E}_{x \sim p_{\text{data}}} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{\theta})$



(Goodfellow et al., 2014)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

ΑΙ



OBSESSIONS

Q

GANs for simulated training data Unlabeled Real Images

Synthetic

Refined

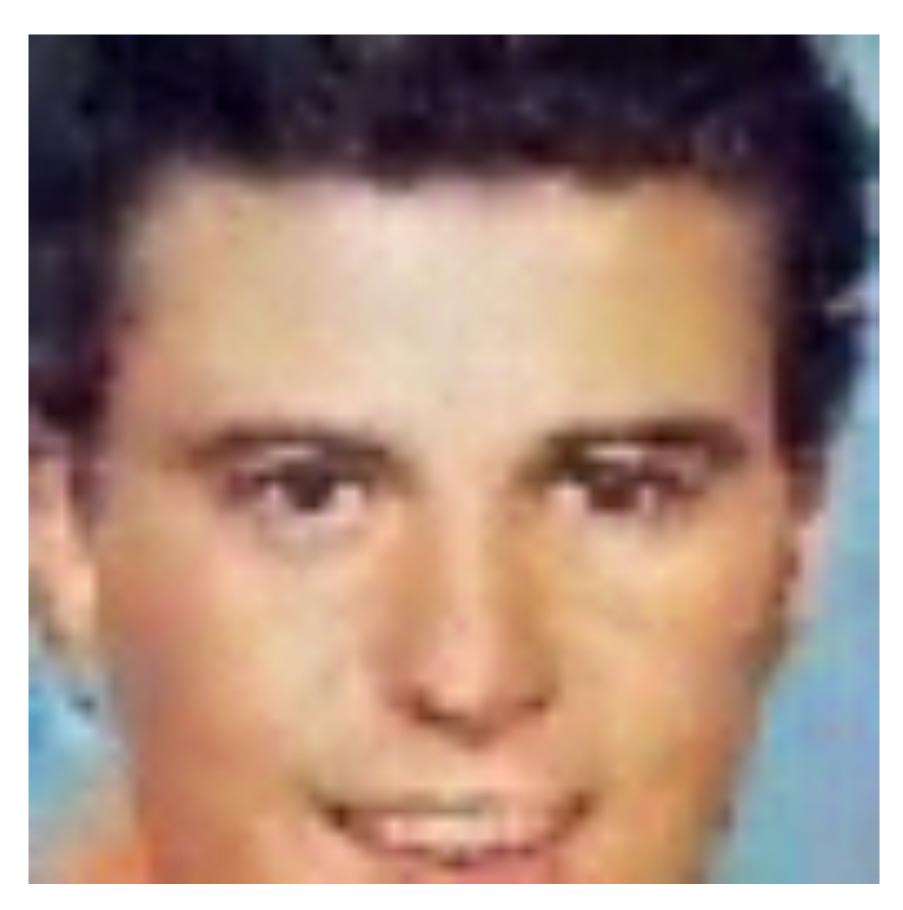
(Shrivastava et al., 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

What is in this image?

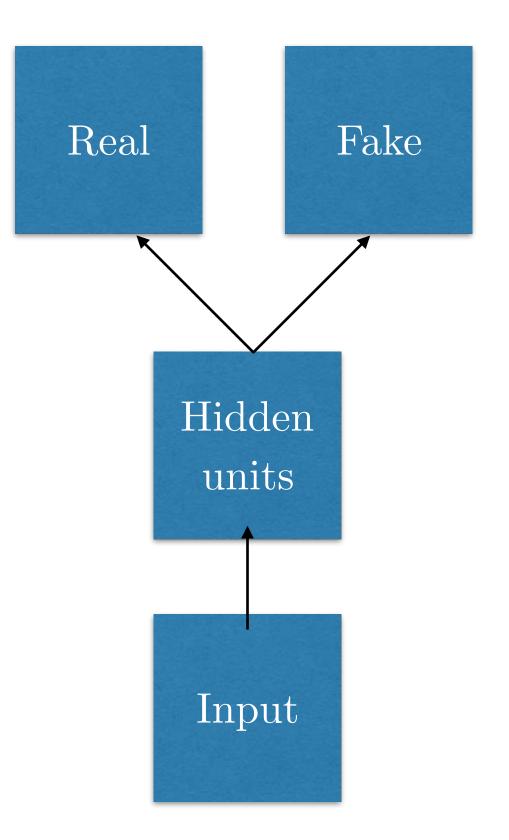
(Yeh et al., 2016)

Generative modeling reveals a face



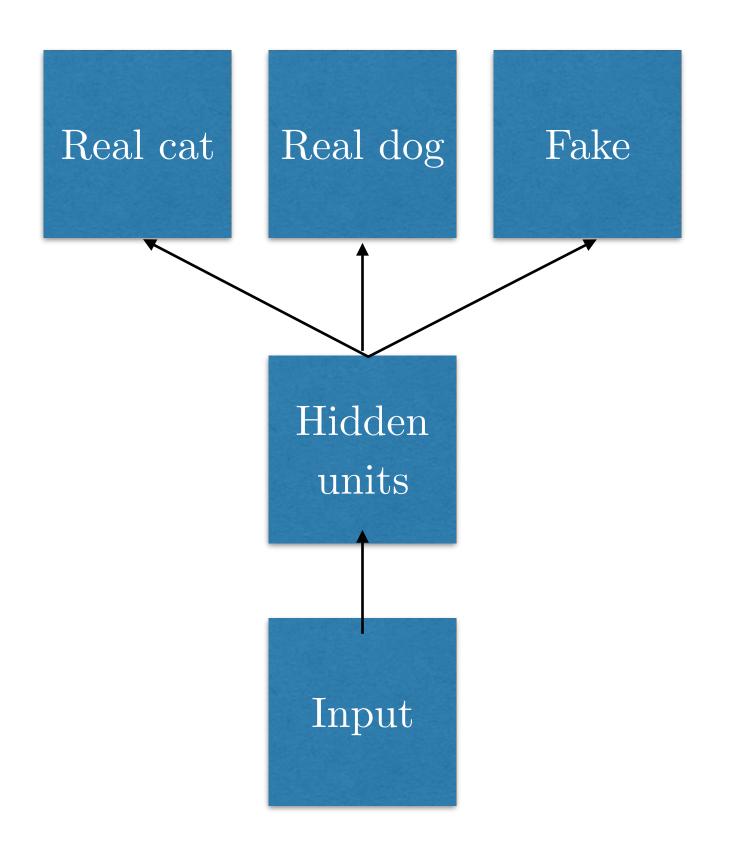
(Yeh et al., 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings



(Odena 2016, Salimans et al 2016)

Supervised Discriminator



Semi-Supervised Classification

20

Model

DGN [21] Virtual Adversarial [22] CatGAN [14] Skip Deep Generative Model [23] Ladder network [24] Auxiliary Deep Generative Model [23] 1677 ± 4 Our model 1134 ± 4 Ensemble of 10 of our models

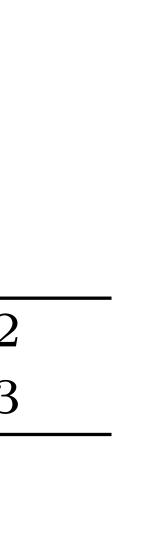
MNIST (Permutation Invariant)

Number of incorrectly predicted test examples

for a given number of labeled samples

	50	100	200
		333 ± 14	
		212	
		191 ± 10	
		132 ± 7	
		106 ± 37	
		96 ± 2	
152	221 ± 136	93 ± 6.5	90 ± 4.2
45	142 ± 96	86 ± 5.6	81 ± 4.3

(Salimans et al 2016)



Semi-Supervised Classification

CIFAR-10

Model	Test error rate for a given number of labeled samples			
	1000	2000	4000	8000
Ladder network [24]			$20.40 {\pm} 0.47$	
CatGAN [14]			$19.58 {\pm} 0.46$	
Our model	$21.83{\pm}2.01$	$19.61 {\pm} 2.09$	$18.63 {\pm} 2.32$	17.72 ± 1.82
Ensemble of 10 of our models	$19.22 {\pm} 0.54$	$17.25 {\pm} 0.66$	$15.59 {\pm} 0.47$	$14.87 {\pm} 0.89$

Au

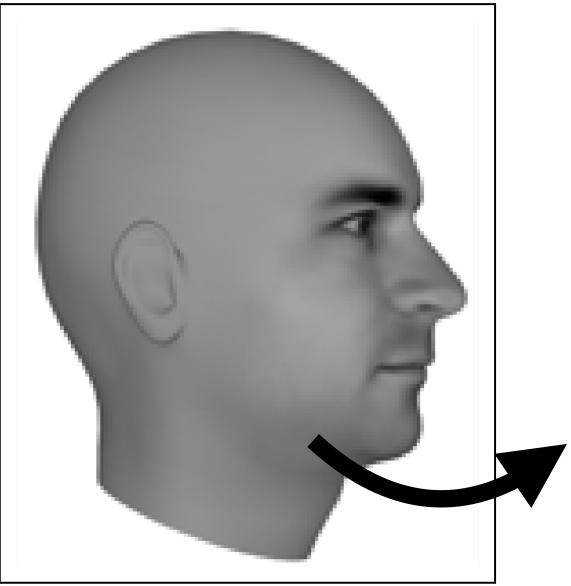
SVHN

Model	Percentage of incorrectly predicted test examples		
	for a given number of labeled samples		
	500	1000	2000
DGN [21]		$36.02 {\pm} 0.10$	
Virtual Adversarial [22]		24.63	
uxiliary Deep Generative Model [23]		22.86	
Skip Deep Generative Model [23]		$16.61 {\pm} 0.24$	
Our model	18.44 ± 4.8	8.11 ± 1.3	6.16 ± 0.58
Ensemble of 10 of our models		5.88 ± 1.0	

(Salimans et al 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Next Video Frame Prediction

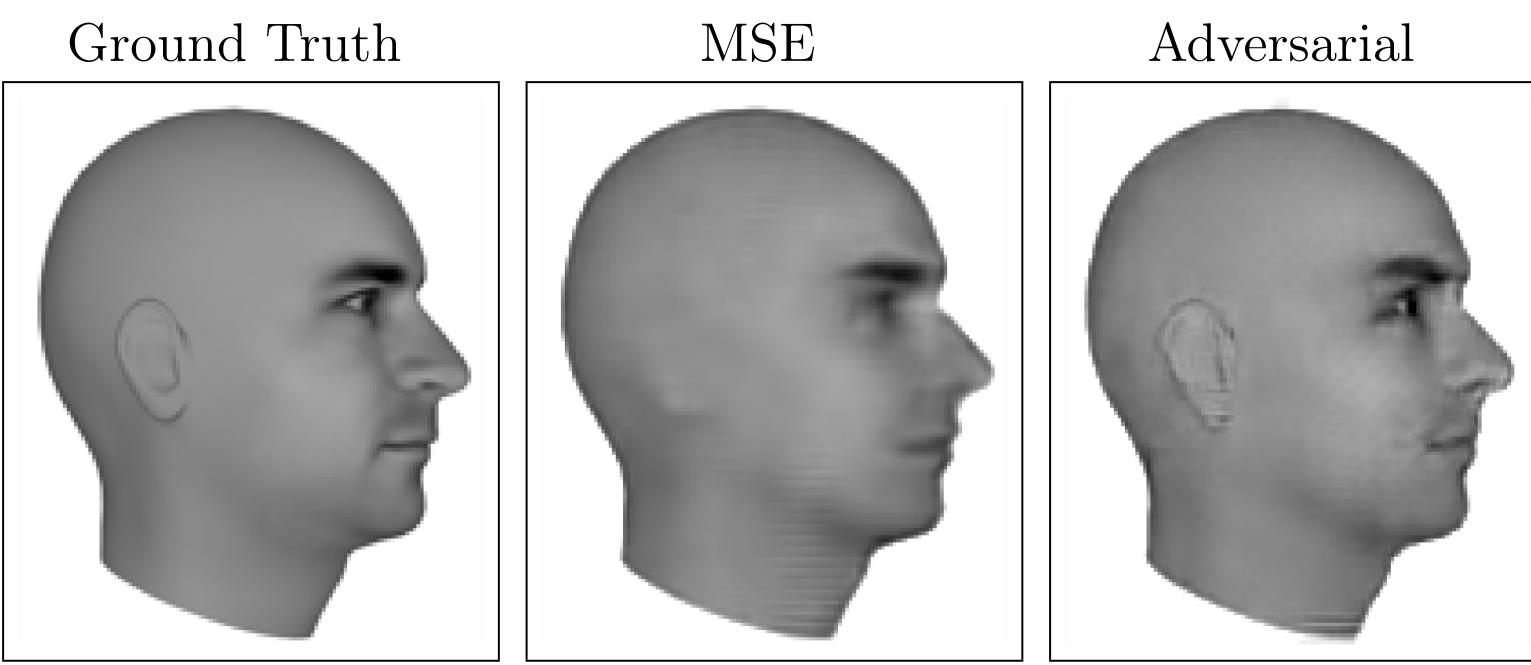


What happens next?

(Lotter et al 2016)

Ground Truth

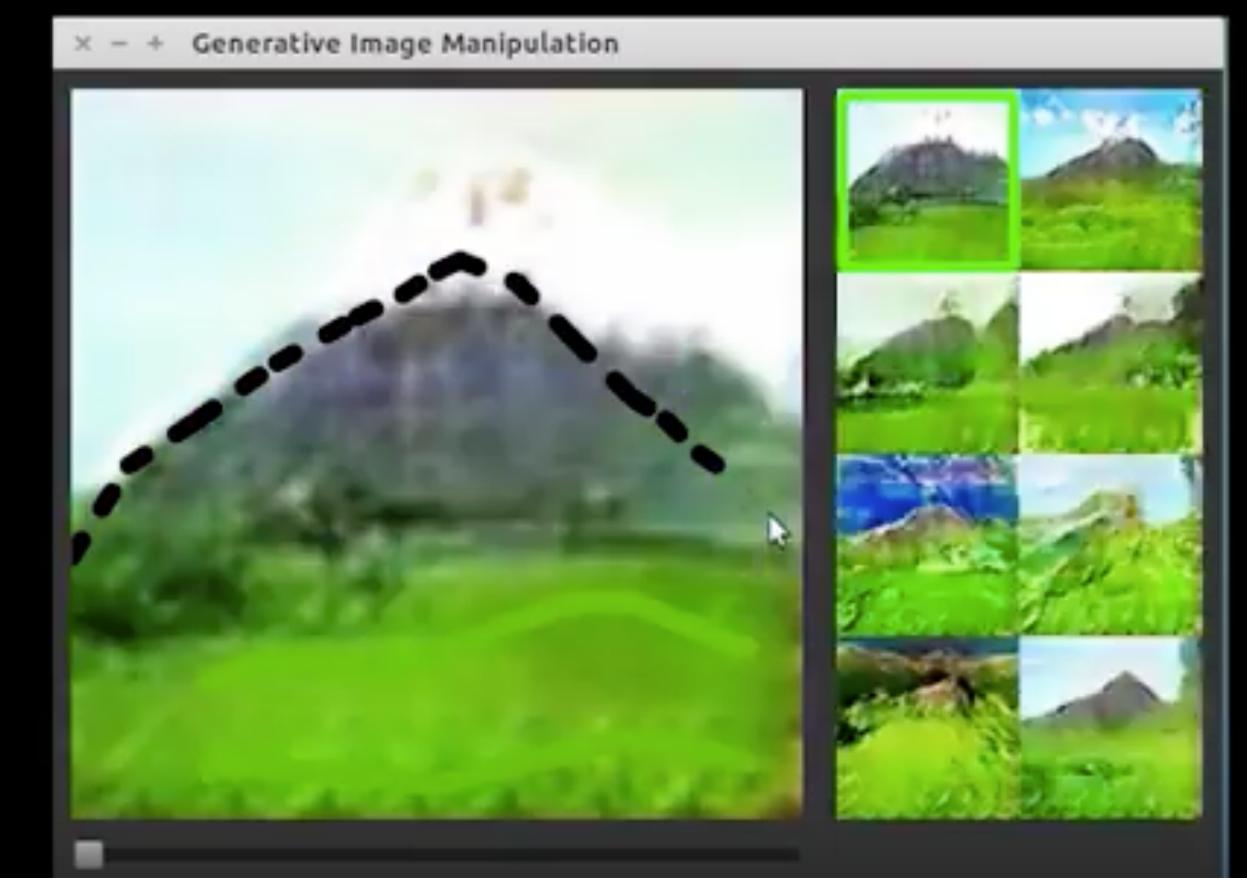
Next Video Frame Prediction



(Lotter et al 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

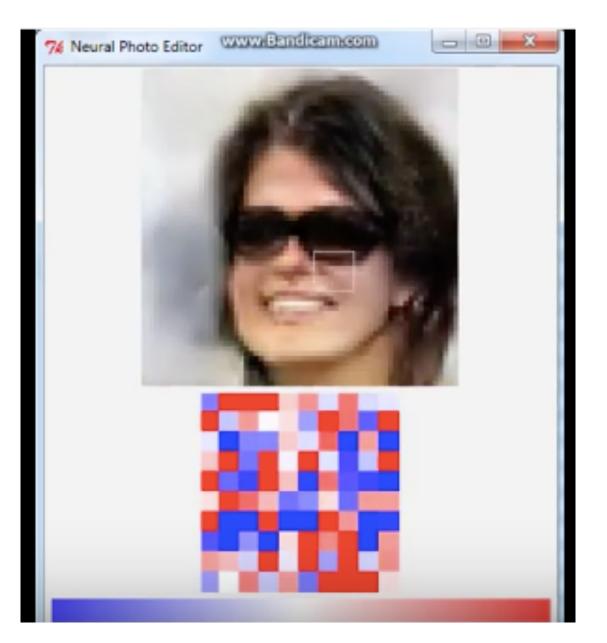
iGAN



youtube

(Zhu et al., 2016)

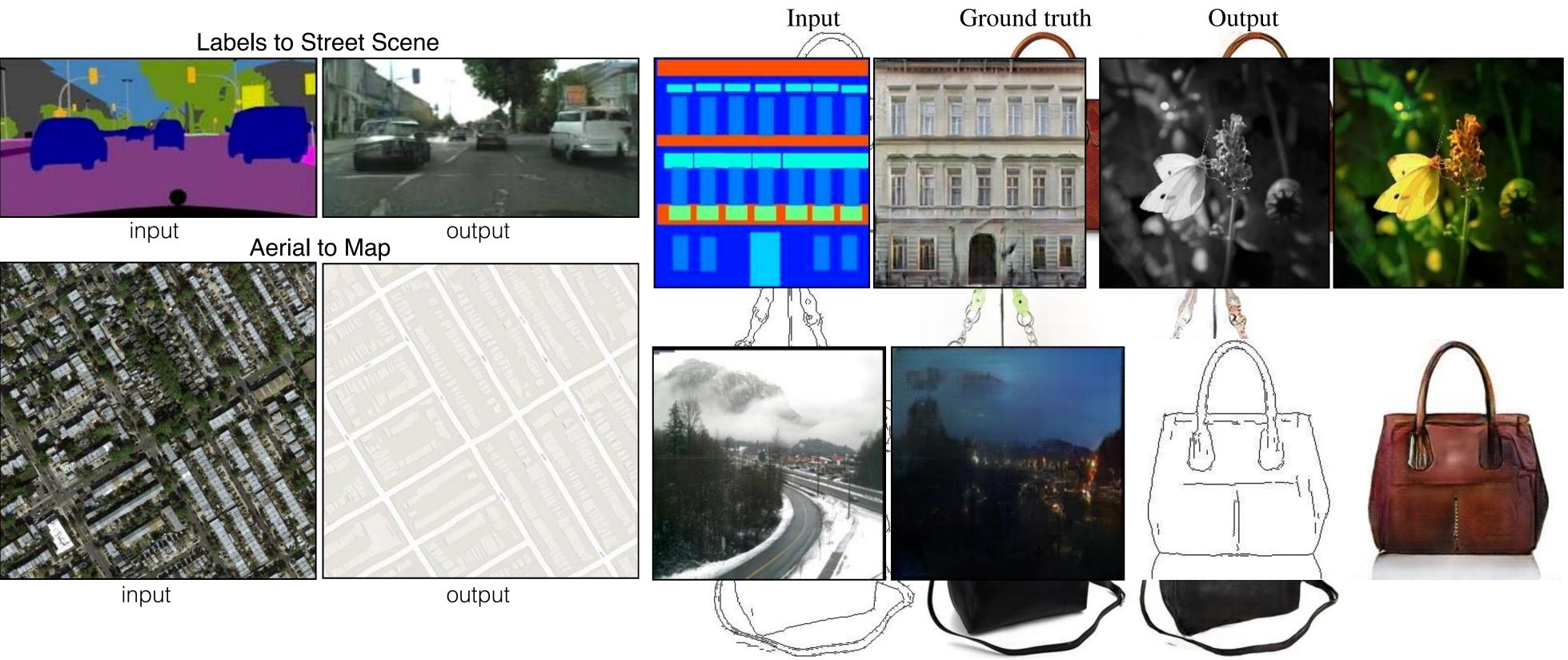
Introspective Adversarial Networks



youtube

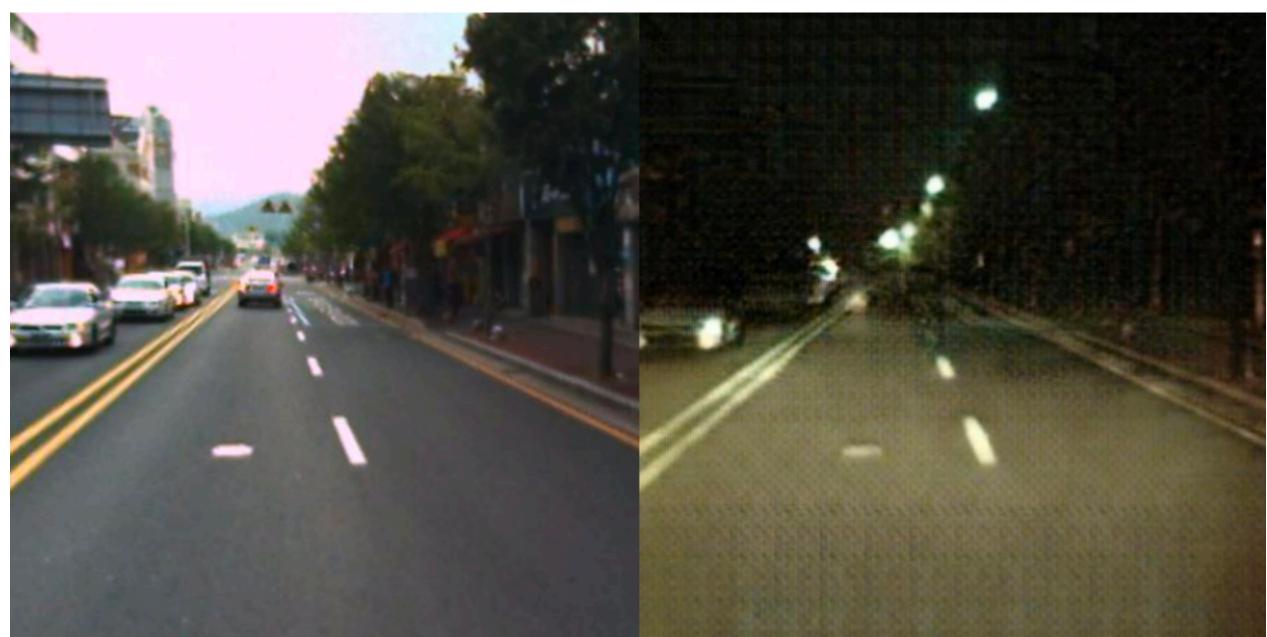
(Brock et al., 2016)

Image to Image Translation



(Isola et al., 2016)

Unsupervised Image-to-Image Translation



Day to night

(Liu et al., 2017)

CycleGAN

(Zhu et al., 2017)

Text-to-Image Synthesis

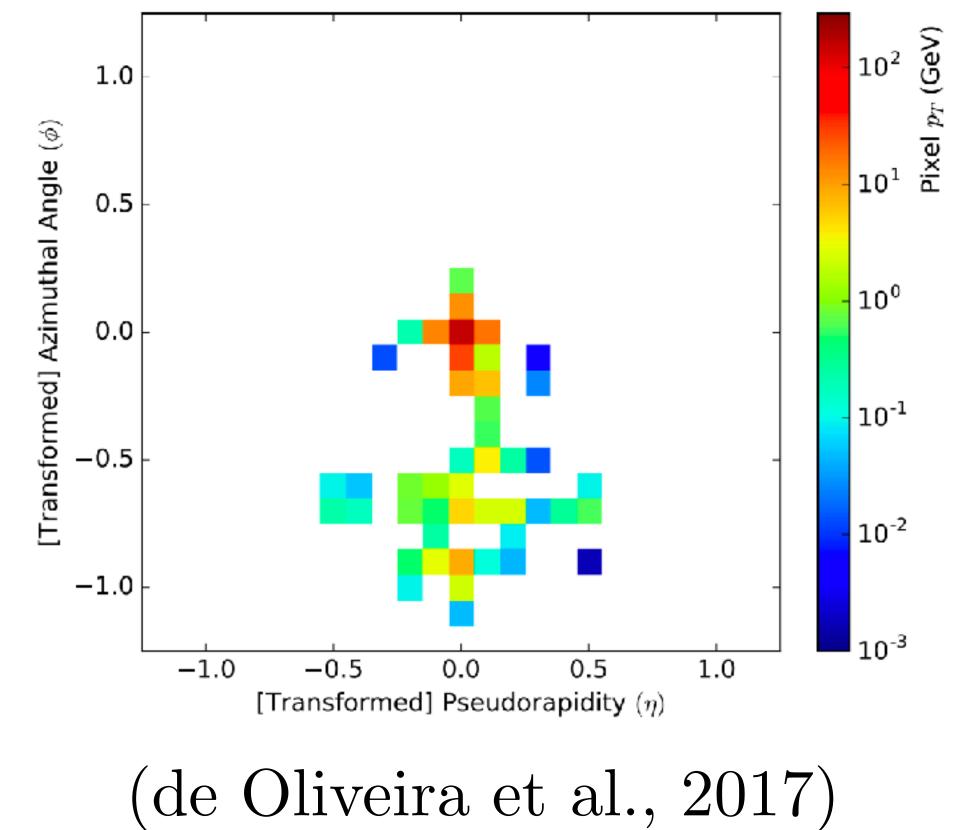
This bird has a yellow belly and tarsus, grey back, wings, and brown throat, nape with a black face

(Zhang et al., 2016)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

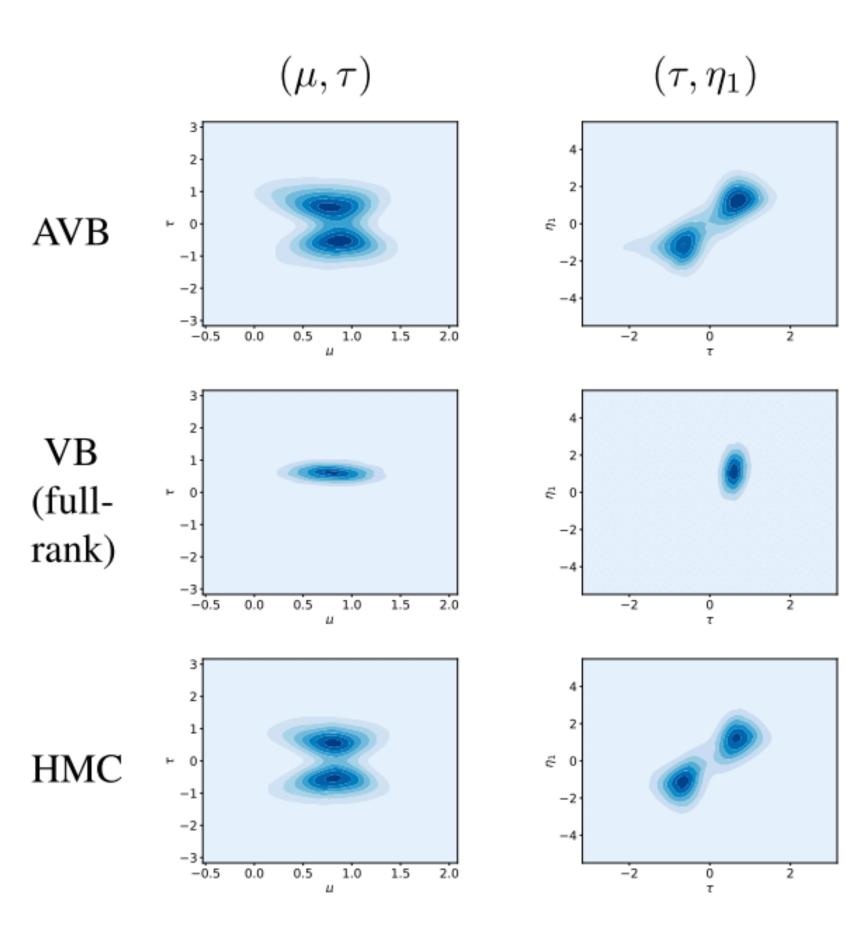
Simulating particle physics

Save millions of dollars of CPU time by predicting outcomes of explicit simulations



- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

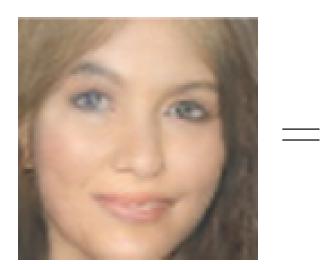
Adversarial Variational Bayes



(Mescheder et al, 2017)

- Simulated environments and training data
- Missing data
 - Semi-supervised learning
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Solve inference problems
- Learn useful embeddings

Vector Space Arithmetic



Man Man with glasses

(Radford et al, 2015)

Woman

Woman with Glasses

Learning interpretable latent codes controlling the generation process

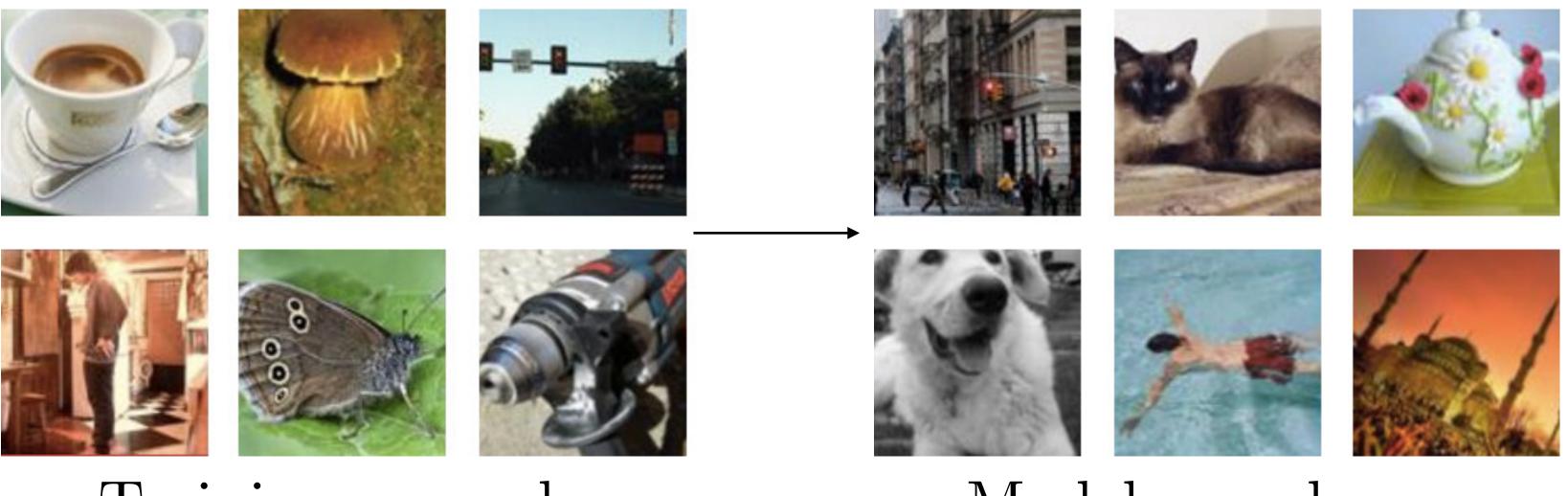
(a) Azimuth (pose)

(c) Lighting

(b) Elevation

(d) Wide or Narrow

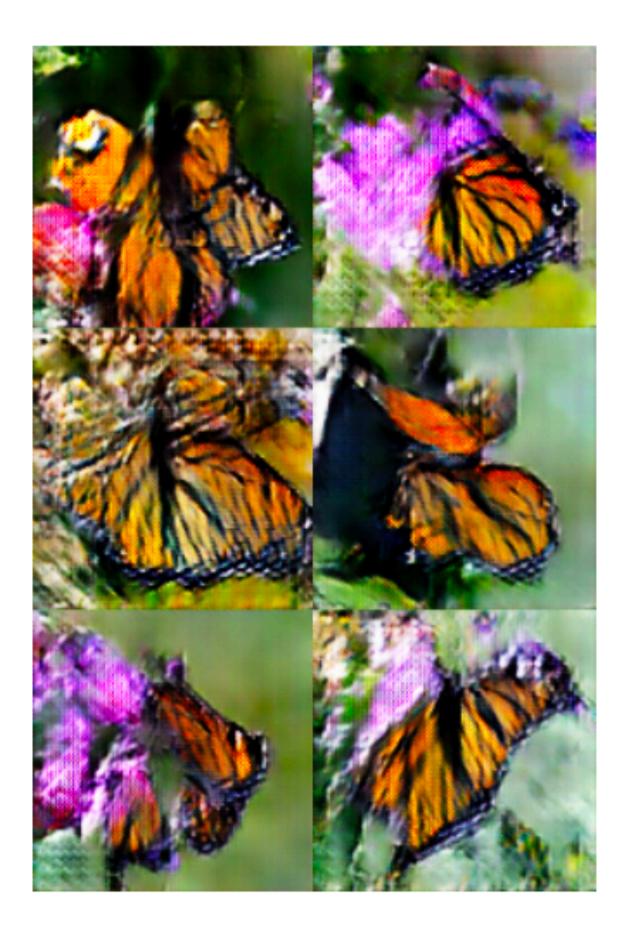
InfoGAN (Chen et al 2016)

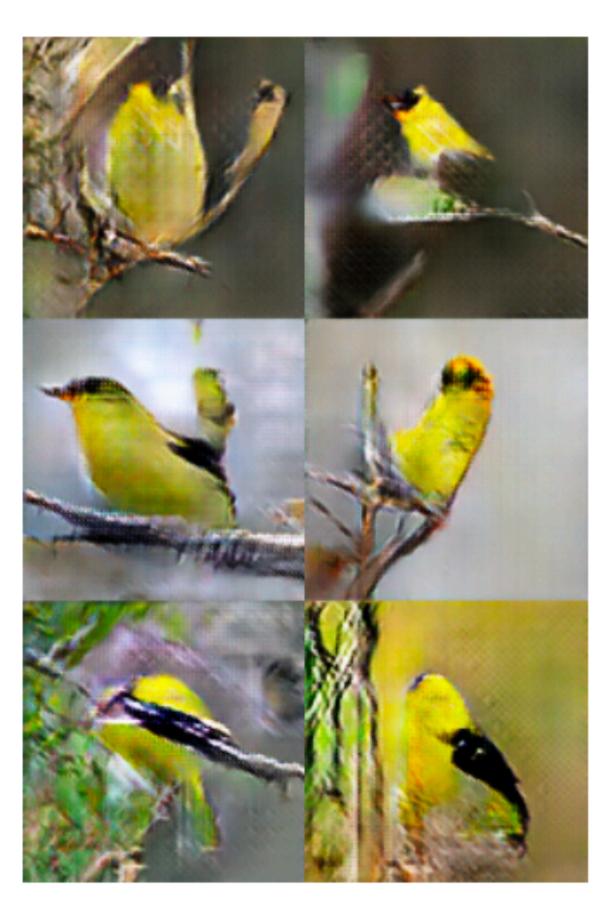


Training examples

How long until GANs can do this?

Model samples

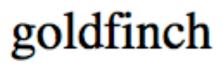




monarch butterfly

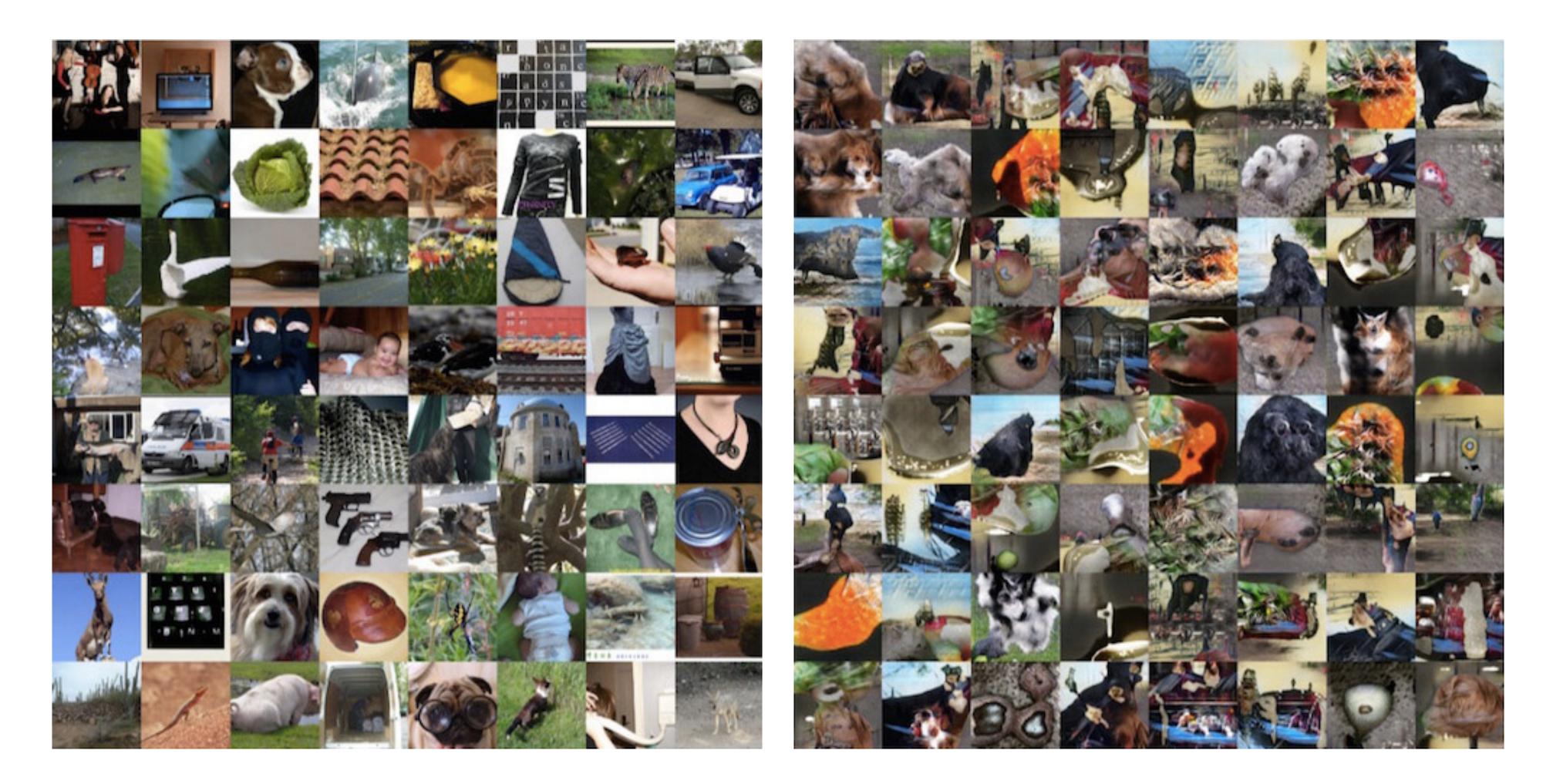
(Odena et al., 2016)

AC-GANs



daisy

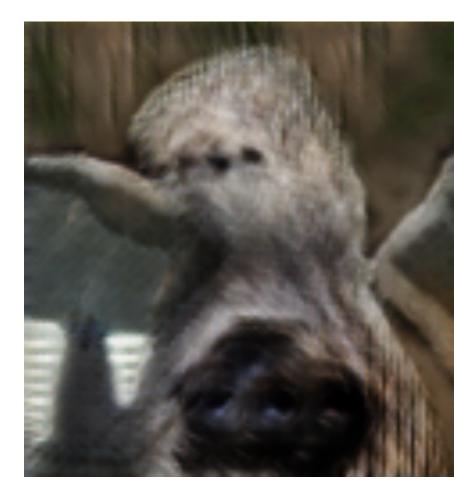
Minibatch GAN on ImageNet

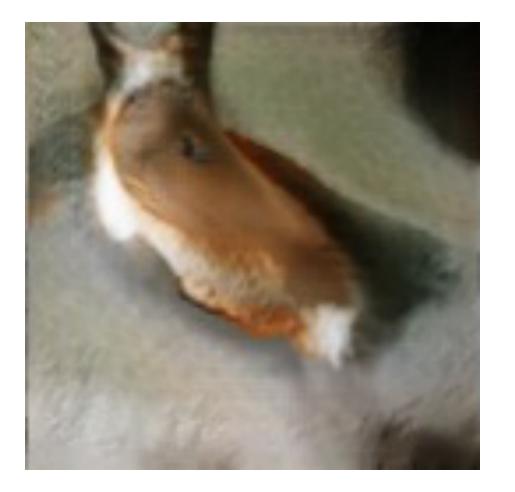


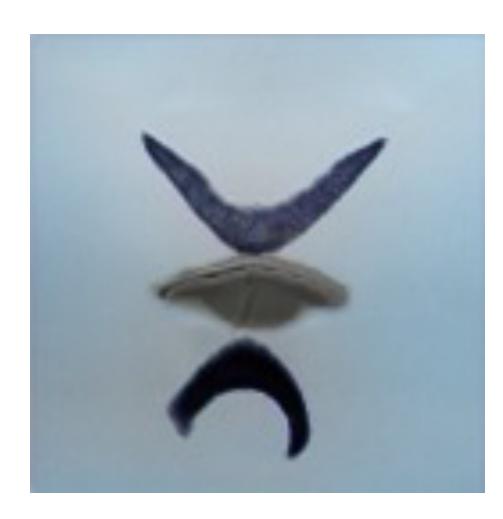
(Salimans et al., 2016)

Cherry-Picked Results

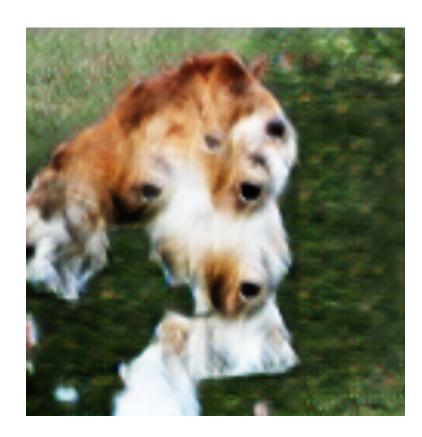


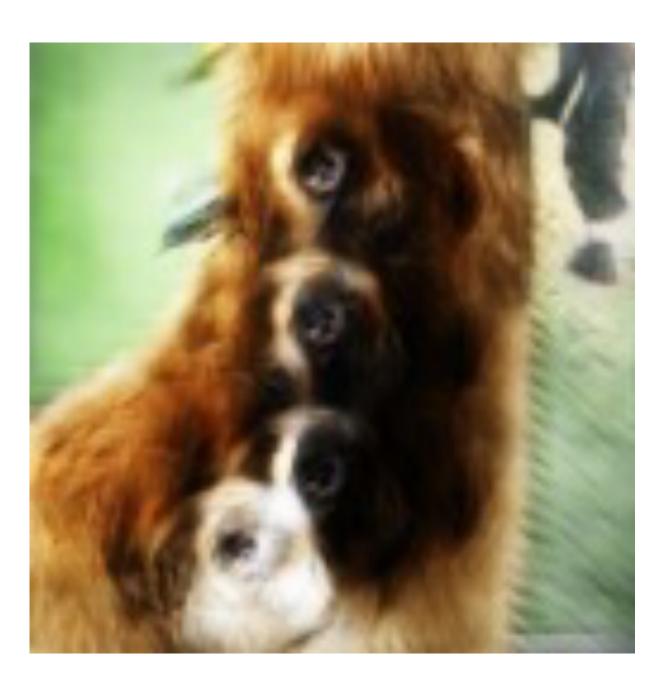




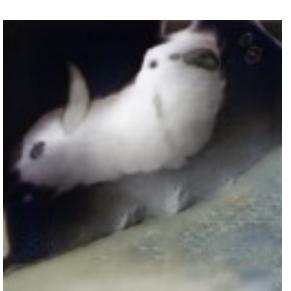


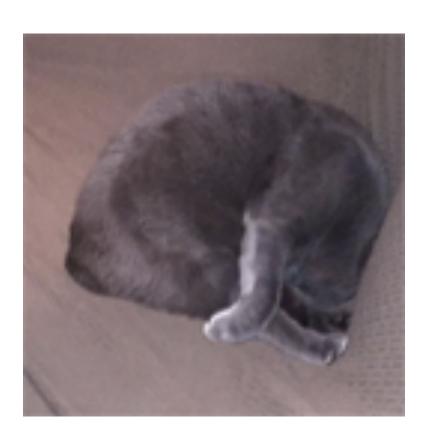
Problems with Counting

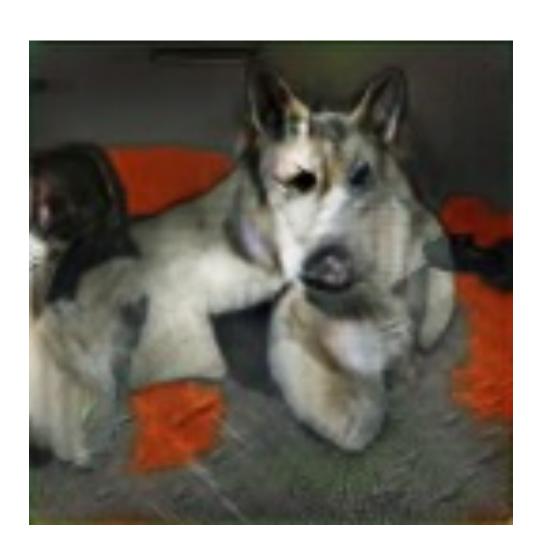


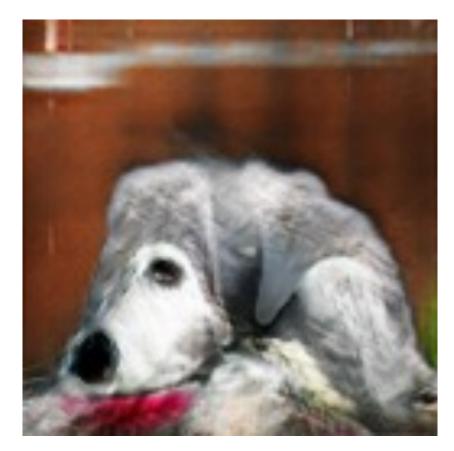


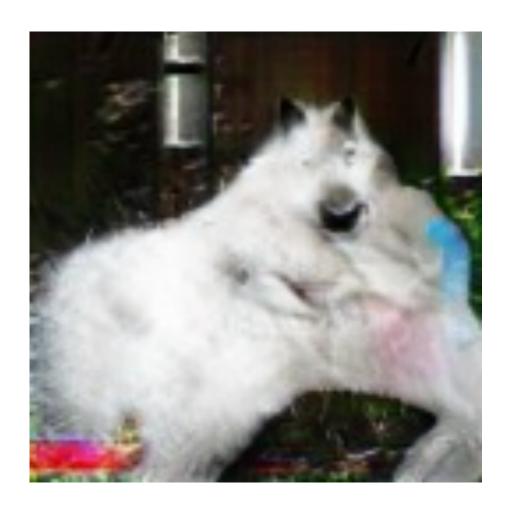
Problems with Perspective

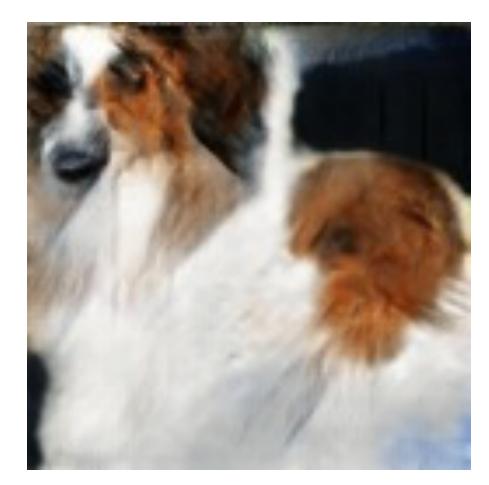


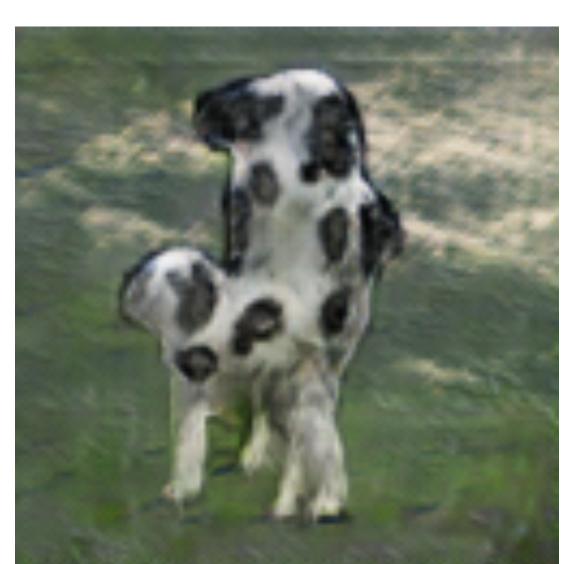








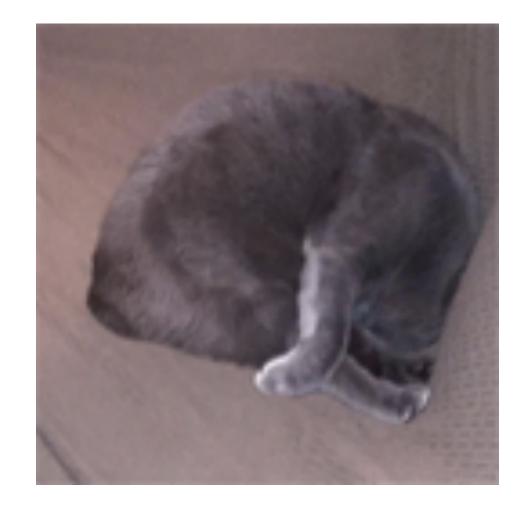




Problems with Global

Structure

This one is real



Conclusion

- tasks
- before GANs can generate arbitrary data

• GANs are generative models based on game theory

• GANs open the door to a wide range of engineering

• There are still important research challenges to solve

