DNA for Automated Driving

Jeremy Dahan
May 8th, 2017
A Driverless Car Developer’s World in 2017

Items to specify: 24

1999: Mercedes S-Class Distronic
2002: VW Phaeton ACC
2005: Mercedes S-Class Distronic plus
2006: Audi Q7 ACC plus / AEB
2010: Audi A8 GPS-guided ACC
2013: Mercedes S-Class Dist.+ / Steering Assistant
2015: Audi Q7 Traffic Jam Assistant

© Elektrobit (EB) 2017 | Confidential
DNA for Automated Driving

What helps? Sensor Data Fusion

Interactions: $n + m + k$

for n sensors, m functions, k abstraction components
What helps? Architecture Is Key To Managing Complexity
Software Framework for ADAS and Automated Driving

Interfaces for
- Interoceptive sensors – wheel ticks, steering angle, accelerometers / gyros
- „Smart“ environment sensors – point clouds, object lists
- ADASISv2/3 for map, SENSORIS for cloud

Integrated safety concept
- System health monitoring and diagnosis
- Safe-state triggering
- Options for redundant environment model and functions (e.g. minimal risk)

Interfaces for
- Kinematic vehicle components
- Instrument cluster
- Infotainment display

www.open-robinos.com
Standardized Interfaces

Every software component has
• scalable, documented and standardized interfaces to other components
• exchangeable interfaces to the base system / OS
• a pre-industrialized algorithm core
A Modular Software Framework Enables You to...

Map onto concrete ECU architecture

Ensure differentiation, shorten time to market

EB modules | Your modules | 3rd-party modules

Upgrade across models / Upgrade over time

NCAP

HAD

DNA for Automated Driving

Map onto concrete ECU architecture

Ensure differentiation, shorten time to market

EB modules | Your modules | 3rd-party modules

Upgrade across models / Upgrade over time

NCAP

HAD
Application example: Automated Valet Parking
Application example: Automated Valet Parking from one to another one
Software framework in action
What about maps?

Range of ego sensors are limited

- Reduce speed in advance before sign is reached
- Warn driver in time before autonomous driving road ends so that he can take back control

Recognition algorithms are limited

- E.g. truck hides speed sign
- E.g. weather conditions for recognition of a traffic sign
- Accuracy of a recognized sign can be improved by multiple observations

Not all information needed can be derived from sensor observations

- Which country / states specific traffic rules apply to the vehicle in its current position? E.g. left hand driving vs. right hand driving (safety critical!!)
Sensor-based Learning for Predictive Driving

1. Collect sensor data
 - Secure connection and transfer

2. Sensor learning
 - Data aggregation
 - Map matching
 - Sensor fusion

3. Incremental NDS Compilation
 - Enriched map updates on daily basis

4. Incremental Map Update Service
 - Delta maps

5. Consumer experience
 - Always up to date electronic horizon for ADAS functions
How sensor data is collected and sent

Image processing

• Objects form camera recognition modules

• Create 2.5D maps of the road

• Algorithms for feature extraction:
 – image processing
 – machine learning

• Objects that can be extracted:
 – lane markings
 – lane Geometry
 – road boundaries
 – lane arrows
 – traffic signs
How sensor data is collected and sent

Top View

Height Map
Example: Zebra crossing recognition on 2.5D maps
How to learn from sensor data and enrich maps

Data processing

• Data cleanup
 – Incoming data is validated regarding location and timestamp
 – Wrong movement profiles (e.g. ferries or trains) are discarded

• Data aggregation
 – Collected data is aggregated into clusters to ensure reliability
 – Clusters are matched on a recent map
 – User data is anonymized to ensure privacy
Example: Zebra crossing in the Cloud
Maps boost ADAS and Automated Driving
DNA for Automated Driving and NVIDIA

EB assist ADTF

EB robinos

DNA for automated driving

Rapid prototyping
C, C++, Model based
PC

Rapid embedding
C, C++
Evaluation hardware

Automotive grade software

EB tresos

© Elektrobit (EB) 2017 | Confidential
Join the community!

EB robinos

- implements the **open robinos** specification
- provides software modules
 - for prototyping in EB Assist ADTF
 - for rapid embedding on AUTOSAR / DRIVE PX
 - for production on vehicle ECU
- developed, tested, verified according to functional safety standards

Open robinos

- specifies a **reference platform** for automated driving up to Level 5 (SAE)
 - architecture
 - interfaces
 - data flow
 - control mechanisms
 - software modules
 - functional safety aspects
- **freely available** and licensed as Creative Commons
- **Available for download**

Download the open robinos specification

www.try-eb-robinos.com

www.open-robinos.com
Conclusion

The problem is not difficulty but complexity.

Software frameworks and functional architectures help solve it.

EB robinos is a software framework for automated driving, applicable across car lines and models – it is DNA for automated driving.
Positioning (robinos, ground truth)

Automated Valet Parking

Automated Highway Driving

Electronic Horizon

Thank you!

www.eb-robinos.com
www.try-eb-robinos.com
Jeremy.Dahan@elektrobit.com