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Maxwell Overview

Visualization Fluids Physics



• First physically based render in the market (2004)
• Ground-truth reference render
• Predictive rendering tool
• Light analysis tool

Maxwell Overview

MAXWELL
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• Keep pixel accuracy
• Use GPU for predictive rendering
• Improve performance
• Spectral, unbiased, accurate PBR
• Support CPU & GPU resuming & merging
• …

Challenges



Predictive Rendering



Correct Fast☺

Fast Correct 
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GPU Maxwell

• Voxelization

• Same Voxelization system as the CPU render
• Currently performed in CPU just once
• BVH 

• Binary tree (each node has 2 childs)
• Coherent traversal

All threads fetch same amount of data / node
Increase coherence in performance
Trees become bigger

+
+
-
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GPU Maxwell

• Thread Mapping

• Module that manages THREAD / PIXEL mapping

• Sampling Level (SL)

• Low Morton Curve
• Medium Balances SPP
• High Uses Variance

Morton Curve
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GPU Maxwell

• Ray Generation Module

• Primary Rays (PR)
• Rays shot from camera
• High degree of coherence
• Two neighboring rays will hit nearby similar objects

• Secondary Rays (SR)
• Rays shot from surfaces
• No coherence
• Two neighbouring rays might hit different objects



GPU Maxwell

• Ray Generation Module

• Thread blocks with just PR
• High degree of coherence
• Best performance situation

• Thread blocks with just SR
• All will take much more time than PR
• The worst SR will drive the performance

• Thread blocks with PR and SR
• SR will hurt PR performance
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GPU Maxwell

• Ray Generation Module

• How do we handle it?

• GPU Ray sorting by Ray Type

• Sorting is really fast
• Simple, yet powerful
• Do it just after 2nd bounce

• Not needed for PR

• Performance boost is scene dependant



GPU Maxwell

• Ray Generation Module

• How do we handle it?

• GPU Ray sorting by Ray Type

• Considerations
• Not useful for medium to small-res images
• Use an indirection buffer

• Cleaner code
• Avoids moving global data
• Much better performance
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GPU Maxwell

• Ray Tracing Module

• GPU architecture dependent kernels
• Fermi, Kepler, Maxwell
• Use every architecture strengths
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GPU Maxwell

Direct Light Module

1. Sample scene emitters at each path node

• Two strategies
• Sample 1 random emitter / sample
• Sample all emitters / sample

2. Visibility test

• Trace shadow rays
• Incoherent rays Ray sorting does not help

3. Many other optimizations
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GPU Maxwell

• Materials Evaluation Module

• Maxwell materials are complex

• Many layers and many BSDFs / layer  very generic



GPU Maxwell

Materials Evaluation Module

• Bbig kernels are harmful
• Samples evaluating different materials

• Access different data
• Execute different code



GPU Maxwell

• Materials Evaluation Module

• Materials Group Queue System (MGQS)

1. Every material is assigned a Material Group ID

2. Queue system for Material Groups (MG)

3. Every queue has specific kernels
• Avoid big kernels

4. Samples are queued to the corresponding MG Queue

5. All samples evaluating the same MG are executed together
• Increased coherence in execution time
• Increased coherence in data access

+

+
+



GPU Maxwell

• Materials Evaluation Module

• Materials Group Queue System (MGQS)

1. Every material is assigned a Material Group ID

2. Queue system for Material Groups (MG)

3. Every queue has specific kernels
• Avoid big kernels

4. Samples are queued to the corresponding MG Queue

5. All samples evaluating the same MG are executed together
• Increased coherence in execution time
• Increased coherence in data access

+

+
+



GPU Maxwell Render
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Using the CPU to improve the GPU engine

Why using our CPU engine as ground truth?

- 12 years old Stable & Robust

- Used many times for validation purposes



CPU vs GPU Case Studies

Guggenheim scene Teapot scene
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Guggenheim Scene



- Slight differences in intensity

- Noise in some areas

- Subtle changes in glossy surfaces

Guggenheim Scene

ISSUES



- Simplifying & Isolating (surprise :P)

- Automated numerical comparisons

-Raytracing text output

- Ray viewer

Guggenheim Scene

STRATEGY



CPU

Guggenheim Scene



Different Intensity
+ 

Noise Problems

GPU

Guggenheim Scene



GPU

GPU

CPU

CPU

Guggenheim Scene – Intensity & Noise



Guggenheim Scene

FINDINGS

• Emitters intensity
• Hidden property of emitters was not working properly
• Non-visible emitters were causing occlusions
• Loss of energy

• Noise
• QMC had some problems for higher dimensions



CPU

Guggenheim Scene

FIXED



GPU

FIXED

Guggenheim Scene



Guggenheim Scene



Guggenheim Scene – Differences in glossies
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Guggenheim Scene – Differences in glossies



CPU GPU

Guggenheim Scene – Differences in glossies



CPU GPU

• Simplify the material  Lambert

Guggenheim Scene – Differences in glossies



Guggenheim Scene – Differences in glossies
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Guggenheim Scene – Differences in glossies

CPU GPU



• It turned out it was not related to materials
• Both glossy and lambert have the same problem
• Difficult to isolate

• Possible problems
• QMC numbers bug?
• Russian Roulette bug?
• Ray / triangle intersection issues with indirect bounces?
• Energy accumulation problem?
• Precision issues?
• …

Guggenheim Scene – Differences in glossies



Russian Roulette was OK
(Mean path length for both engines was the same)

Guggenheim Scene – Differences in glossies



CPU – QMC Distributions GPU – QMC Distributions

Guggenheim Scene – Differences in glossies



CPU – QMC Distributions GPU – QMC Distributions

Guggenheim Scene – Differences in glossies

Automated tests detected differences!



CPU GPU

SOLVED

Guggenheim Scene – Differences in glossies



Guggenheim Scene

CPU == GPU ☺





Teapot Scene

CPU GPU



Teapot Scene



Teapot Scene



- Subtle differences in bump/normal mapping

- Differences in materials with many layers/bsdfs

- Small changes in intensity

Teapot Scene

ISSUES



Use cases where CPU Maxwell helped… A LOT!!!

CPU GPU

Test 1 : Lambert materials + Constant Sky  OK



Test 2 : Added textures + Normal maps WRONG

CPU GPU

Teapot Scene



CPU GPU

Test 3 : Added multilayered materials WRONG

Teapot Scene



• Automated CPU vs GPU numerical comparisons were key
• Rays reaching IBL were not accumulating energy properly
• Multilayered weights were not properly computed

• Bug introduced when porting CPU optimized code 
• Precision issues creating TBN bases (Affected bump/normal mapping)

Teapot Scene

FINDINGS





Next Steps Unbiased, GPU friendly SSS
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Main sources of bugs:

- CPU optimized code not easy to port

- Refactoring to make code GPU friendly

- Precision issues with some math operators

Summary



- 90% of the complexity of Maxwell already ported

-Very happy with the results: Speed boost: 5x-15x 

- CUDA made it possible 

- Validating using a ground truth renderer

- Was painful

- 100% worth in the long run (quality first, speed second) 

Summary
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