
Porting Maxwell to the GPU
Top Challenges

Juan Cañada
Head of Visualization 

Next Limit Technologies



- Maxwell overview

- Why porting to the GPU was challenging

- Performance considerations

- Using the CPU to improve the GPU engine

- Summary

Agenda



- Maxwell overview

- Why porting to the GPU was challenging

- Performance considerations

- Using the CPU to improve the GPU engine

- Summary

Agenda



Maxwell Overview

Visualization Fluids Physics



• First physically based render in the market (2004)
• Ground-truth reference render
• Predictive rendering tool
• Light analysis tool

Maxwell Overview

MAXWELL



- Animation & VFX

- Architecture

- Industrial Design

- Science

- Others

Maxwell in use



- Animation & VFX

- Architecture

- Industrial Design

- Science

- Others

Maxwell in use



- Animation & VFX

- Architecture

- Industrial Design

- Science

- Others

Maxwell in use



- Animation & VFX

- Architecture

- Industrial Design

- Science

- Others

Maxwell in use



- Animation & VFX

- Architecture

- Industrial Design

- Science

- Others

Maxwell in use





- Maxwell Render overview

- Why porting to the GPU was challenging

- Performance considerations

- Using the CPU to improve the GPU engine

- Summary

Agenda



• Keep pixel accuracy
• Use GPU for predictive rendering
• Improve performance
• Spectral, unbiased, accurate PBR
• Support CPU & GPU resuming & merging
• …

Challenges



Predictive Rendering



Correct Fast☺

Fast Correct 





- Maxwell overview

- Why porting to the GPU was challenging

- Performance considerations

- Using the CPU to improve the GPU engine

- Summary

Agenda



Maxwell GPU Architecture

Ray
Tracing

Thread
Mapping

Materials
Evaluation

TM?

GPURay Generation

Ray Sorting

Direct Light

Visibility Test

Geometry
Voxelization



GPU Maxwell

Ray
Tracing

Thread
Mapping

Materials
Evaluation

TM?

GPURay Generation

Ray Sorting

Direct Light

Visibility Test

Geometry
Voxelization



GPU Maxwell

• Voxelization

• Same Voxelization system as the CPU render
• Currently performed in CPU just once
• BVH 

• Binary tree (each node has 2 childs)
• Coherent traversal

All threads fetch same amount of data / node
Increase coherence in performance
Trees become bigger

+
+
-



GPU Maxwell

Ray
Tracing

Thread
Mapping

Materials
Evaluation

TM?

GPURay Generation

Ray Sorting

Direct Light

Visibility Test

Geometry
Voxelization



Ray Generation

Ray Sorting

Geometry
Voxelization

GPU Maxwell

Ray
Tracing

Materials
Evaluation

TM?

Direct Light

Visibility Test

GPUThread
Mapping



GPU Maxwell

• Thread Mapping

• Module that manages THREAD / PIXEL mapping

• Sampling Level (SL)

• Low Morton Curve
• Medium Balances SPP
• High Uses Variance

Morton Curve



Ray Generation

Ray Sorting

Geometry
Voxelization

GPU Maxwell

Ray
Tracing

Materials
Evaluation

TM?

Direct Light

Visibility Test

GPUThread
Mapping



Geometry
Voxelization

GPU Maxwell

Ray
Tracing

Thread
Mapping

Materials
Evaluation

TM?

Direct Light

Visibility Test

GPURay Generation

Ray Sorting



GPU Maxwell

• Ray Generation Module

• Primary Rays (PR)
• Rays shot from camera
• High degree of coherence
• Two neighboring rays will hit nearby similar objects

• Secondary Rays (SR)
• Rays shot from surfaces
• No coherence
• Two neighbouring rays might hit different objects



GPU Maxwell

• Ray Generation Module

• Thread blocks with just PR
• High degree of coherence
• Best performance situation

• Thread blocks with just SR
• All will take much more time than PR
• The worst SR will drive the performance

• Thread blocks with PR and SR
• SR will hurt PR performance



GPU Maxwell

• Ray Generation Module

• How do we handle it?

• GPU Ray sorting by Ray Type

PR0 PR1 SR0 PR2 SR1 PR3 SR2 PR4



GPU Maxwell

• Ray Generation Module

• How do we handle it?

• GPU Ray sorting by Ray Type

PR0 PR1 SR0 PR2 SR1 PR3 SR2 PR4

PR0 PR1 SR0PR2 SR1PR3 SR2PR4



GPU Maxwell

• Ray Generation Module

• How do we handle it?

• GPU Ray sorting by Ray Type

• Sorting is really fast
• Simple, yet powerful
• Do it just after 2nd bounce

• Not needed for PR

• Performance boost is scene dependant



GPU Maxwell

• Ray Generation Module

• How do we handle it?

• GPU Ray sorting by Ray Type

• Considerations
• Not useful for medium to small-res images
• Use an indirection buffer

• Cleaner code
• Avoids moving global data
• Much better performance



Geometry
Voxelization

GPU Maxwell

Ray
Tracing

Thread
Mapping

Materials
Evaluation

TM?

Direct Light

Visibility Test

GPURay Generation

Ray Sorting



Geometry
Voxelization

GPU Maxwell

Thread
Mapping

Materials
Evaluation

TM?

Ray Generation

Ray Sorting

Direct Light

Visibility Test

GPURay
Tracing



GPU Maxwell

• Ray Tracing Module

• GPU architecture dependent kernels
• Fermi, Kepler, Maxwell
• Use every architecture strengths



Geometry
Voxelization

GPU Maxwell

Thread
Mapping

Materials
Evaluation

TM?

Ray Generation

Ray Sorting

Direct Light

Visibility Test

GPURay
Tracing



Geometry
Voxelization

GPU Maxwell Render

Ray
Tracing

Thread
Mapping

Materials
Evaluation

TM?

Ray Generation

Ray Sorting

Direct Light

Visibility Test

GPU



GPU Maxwell

Direct Light Module

1. Sample scene emitters at each path node

• Two strategies
• Sample 1 random emitter / sample
• Sample all emitters / sample

2. Visibility test

• Trace shadow rays
• Incoherent rays Ray sorting does not help

3. Many other optimizations



Geometry
Voxelization

GPU Maxwell

Ray
Tracing

Thread
Mapping

Materials
Evaluation

TM?

Ray Generation

Ray Sorting

Direct Light

Visibility Test

GPU



Geometry
Voxelization

GPU Maxwell

Ray
Tracing

Thread
Mapping

TM?

Ray Generation

Ray Sorting

Direct Light

Visibility Test

GPU

Materials
Evaluation



GPU Maxwell

• Materials Evaluation Module

• Maxwell materials are complex

• Many layers and many BSDFs / layer  very generic



GPU Maxwell

Materials Evaluation Module

• Bbig kernels are harmful
• Samples evaluating different materials

• Access different data
• Execute different code



GPU Maxwell

• Materials Evaluation Module

• Materials Group Queue System (MGQS)

1. Every material is assigned a Material Group ID

2. Queue system for Material Groups (MG)

3. Every queue has specific kernels
• Avoid big kernels

4. Samples are queued to the corresponding MG Queue

5. All samples evaluating the same MG are executed together
• Increased coherence in execution time
• Increased coherence in data access

+

+
+



GPU Maxwell

• Materials Evaluation Module

• Materials Group Queue System (MGQS)

1. Every material is assigned a Material Group ID

2. Queue system for Material Groups (MG)

3. Every queue has specific kernels
• Avoid big kernels

4. Samples are queued to the corresponding MG Queue

5. All samples evaluating the same MG are executed together
• Increased coherence in execution time
• Increased coherence in data access

+

+
+



GPU Maxwell Render

• Materials Evaluation Module

• Materials Group Queue System (MGQS)

1. Every material is assigned a Material Group ID

2. Queue system for Material Groups (MG)

3. Every queue has specific kernels
• Avoid big kernels

4. Samples are queued to the corresponding MG Queue

5. All samples evaluating the same MG are executed together
• Increased coherence in execution time
• Increased coherence in data access

+

+
+



GPU Maxwell

• Materials Evaluation Module

• Materials Group Queue System (MGQS)

1. Every material is assigned a Material Group ID

2. Queue system for Material Groups (MG)

3. Every queue has specific kernels (Avoid big kernels)

4. Samples are queued to the corresponding MG Queue

5. All samples evaluating the same MG are executed together
• Increased coherence in execution time
• Increased coherence in data access

+
+



GPU Maxwell

• Materials Evaluation Module

• Materials Group Queue System (MGQS)

1. Every material is assigned a Material Group ID

2. Queue system for Material Groups (MG)

3. Every queue has specific kernels (Avoid big kernels)

4. Samples are queued to the corresponding MG Queue

5. All samples evaluating the same MG are executed together
• Increased coherence in execution time
• Increased coherence in data access



GPU Maxwell

• Materials Evaluation Module

• Materials Group Queue System (MGQS)

1. Every material is assigned a Material Group ID

2. Queue system for Material Groups (MG)

3. Every queue has specific kernels (Avoid big kernels)

4. Samples are queued to the corresponding MG Queue

5. All samples evaluating the same MG are executed together
• Increased coherence in execution time
• Increased coherence in data access



Geometry
Voxelization

GPU Maxwell

Ray
Tracing

Thread
Mapping

TM?

Ray Generation

Ray Sorting

Direct Light

Visibility Test

GPU

Materials
Evaluation



Thread
Mapping

Ray Generation

Ray Sorting

Materials
Evaluation

Geometry
Voxelization

GPU Maxwell

Ray
Tracing

Direct Light

Visibility Test

GPU

TM?



GPU Maxwell

Ray
Tracing

Thread
Mapping

Materials
Evaluation

TM?

GPURay Generation

Ray Sorting

Direct Light

Visibility Test

Geometry
Voxelization





- Maxwell overview

- Why porting to the GPU was challenging

- Performance considerations

- Using the CPU to improve the GPU engine

- Summary

Agenda



Using the CPU to improve the GPU engine

Why using our CPU engine as ground truth?

- 12 years old Stable & Robust

- Used many times for validation purposes



CPU vs GPU Case Studies

Guggenheim scene Teapot scene



Guggenheim Scene



Guggenheim Scene



- Slight differences in intensity

- Noise in some areas

- Subtle changes in glossy surfaces

Guggenheim Scene

ISSUES



- Simplifying & Isolating (surprise :P)

- Automated numerical comparisons

-Raytracing text output

- Ray viewer

Guggenheim Scene

STRATEGY



CPU

Guggenheim Scene



Different Intensity
+ 

Noise Problems

GPU

Guggenheim Scene



GPU

GPU

CPU

CPU

Guggenheim Scene – Intensity & Noise



Guggenheim Scene

FINDINGS

• Emitters intensity
• Hidden property of emitters was not working properly
• Non-visible emitters were causing occlusions
• Loss of energy

• Noise
• QMC had some problems for higher dimensions



CPU

Guggenheim Scene

FIXED



GPU

FIXED

Guggenheim Scene



Guggenheim Scene



Guggenheim Scene – Differences in glossies



Guggenheim Scene – Differences in glossies



Guggenheim Scene – Differences in glossies



CPU GPU

Guggenheim Scene – Differences in glossies



CPU GPU

• Simplify the material  Lambert

Guggenheim Scene – Differences in glossies



Guggenheim Scene – Differences in glossies

CPU GPU



Guggenheim Scene – Differences in glossies

CPU GPU



• It turned out it was not related to materials
• Both glossy and lambert have the same problem
• Difficult to isolate

• Possible problems
• QMC numbers bug?
• Russian Roulette bug?
• Ray / triangle intersection issues with indirect bounces?
• Energy accumulation problem?
• Precision issues?
• …

Guggenheim Scene – Differences in glossies



Russian Roulette was OK
(Mean path length for both engines was the same)

Guggenheim Scene – Differences in glossies



CPU – QMC Distributions GPU – QMC Distributions

Guggenheim Scene – Differences in glossies



CPU – QMC Distributions GPU – QMC Distributions

Guggenheim Scene – Differences in glossies

Automated tests detected differences!



CPU GPU

SOLVED

Guggenheim Scene – Differences in glossies



Guggenheim Scene

CPU == GPU ☺





Teapot Scene

CPU GPU



Teapot Scene



Teapot Scene



- Subtle differences in bump/normal mapping

- Differences in materials with many layers/bsdfs

- Small changes in intensity

Teapot Scene

ISSUES



Use cases where CPU Maxwell helped… A LOT!!!

CPU GPU

Test 1 : Lambert materials + Constant Sky  OK



Test 2 : Added textures + Normal maps WRONG

CPU GPU

Teapot Scene



CPU GPU

Test 3 : Added multilayered materials WRONG

Teapot Scene



• Automated CPU vs GPU numerical comparisons were key
• Rays reaching IBL were not accumulating energy properly
• Multilayered weights were not properly computed

• Bug introduced when porting CPU optimized code 
• Precision issues creating TBN bases (Affected bump/normal mapping)

Teapot Scene

FINDINGS





Next Steps Unbiased, GPU friendly SSS



- Maxwell Render overview

- Why porting to the GPU was challenging

- Performance considerations

- Using the CPU to improve the GPU engine

- Summary

Agenda



Main sources of bugs:

- CPU optimized code not easy to port

- Refactoring to make code GPU friendly

- Precision issues with some math operators

Summary



- 90% of the complexity of Maxwell already ported

-Very happy with the results: Speed boost: 5x-15x 

- CUDA made it possible 

- Validating using a ground truth renderer

- Was painful

- 100% worth in the long run (quality first, speed second) 

Summary



Thanks!

Juan Cañada
Head of Visualization 

Next Limit Technologies


