

DEEP LEARNING DEMYSTIFIED

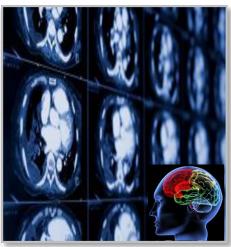
Will Ramey

Director, Developer Programs NVIDIA Corporation

DEFINITIONS

DEEP LEARNING IS SWEEPING ACROSS INDUSTRIES

Internet Services

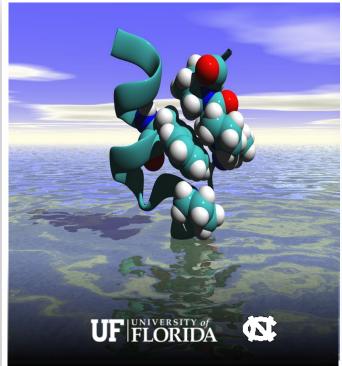

Medicine

Media & Entertainment

Security & Defense

Autonomous Machines

- > Image/Video classification
- > Speech recognition
- > Natural language processing
- > Cancer cell detection
- Diabetic grading
- Drug discovery

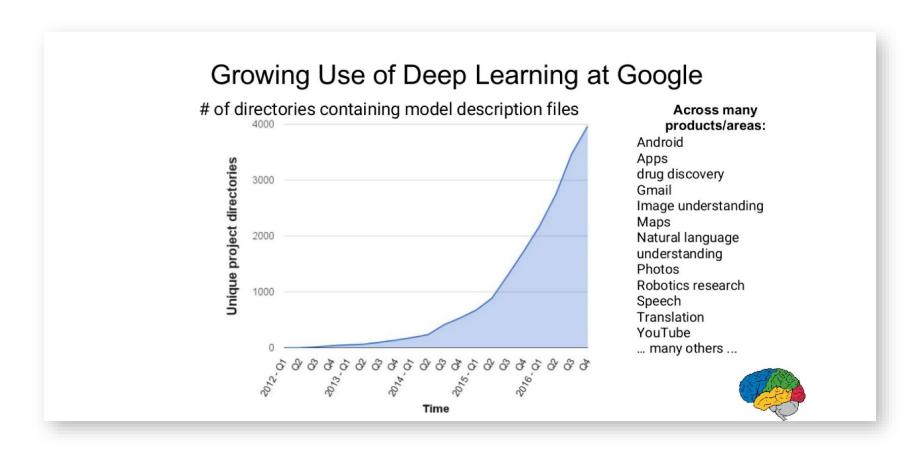

- Video captioning
- > Content based search
- > Real time translation
- > Face recognition
- > Video surveillance
- > Cyber security

- > Pedestrian detection
- > Lane tracking
- > Recognize traffic signs

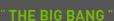
DEEP LEARNING IS TRANSFORMING HPC

"Seeing" Gravity In Real Time

Accelerating Drug Discovery


92% believe AI will impact their work 93% using deep learning seeing positive results inside **HPC**

> insideHPC.com Survey November 2016


AI IS CRITICAL FOR INTERNET APPLICATIONS

Users Expect Intelligence In Services

THE EXPANDING UNIVERSE OF MODERN AL

Big Data ĞPU Algorithms

😭 api.ai

BLUERIVER

crop-yield optimization

clarifai

visual recognition platform

M Morpho

nervana

>SADAKO

Waste Management

drive.ai

eCommerce & Medica

SocialEves*

charles schwab

allalla CISCO

AstraZeneca 🕏

 \mathfrak{M}

Bai d 百度

Bloomberg

ebay

FANUC

Ford

gsk

SIEM

MERCK

yel

1,000+ AI START-UPS

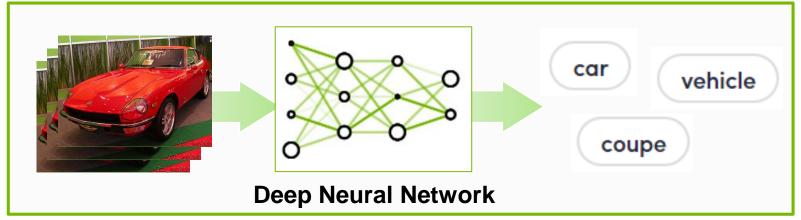
\$5B IN FUNDING

A NEW COMPUTING MODEL

Algorithms that Learn from Examples

Traditional Approach

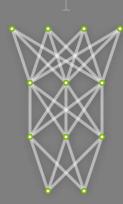
- > Requires domain experts
- > Time consuming
- > Error prone
- Not scalable to new problems


A NEW COMPUTING MODEL

Algorithms that Learn from Examples

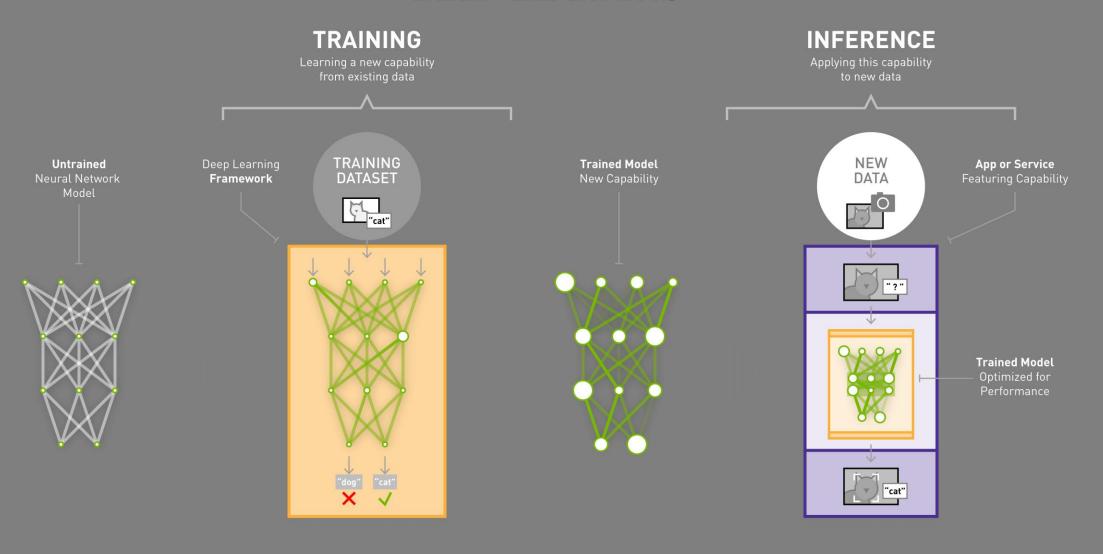
Traditional Approach

- > Requires domain experts
- > Time consuming
- Error prone
- Not scalable to new problems



Deep Learning Approach

- ✓ Learn from data
- ✓ Easily to extend
- ✓ Speedup with GPUs



Untrained Neural Network Model

TRAINING Learning a new capability from existing data TRAINING DATASET Untrained Framework

TRAINING Learning a new capability from existing data TRAINING DATASET Untrained Trained Model Framework New Capability

CHALLENGES

Deep Learning Needs	Why	
Data Scientists	New computing model	
Latest Algorithms	Rapidly evolving	
Fast Training	Impossible -> Practical	
Deployment Platforms	Must be available everywhere	

NVIDIA DEEP LEARNING INSTITUTE

Hands-on Training for Data Scientists and Software Engineers

Helping the world to solve challenging problems using AI and deep learning

On-site workshops and online courses presented by certified instructors

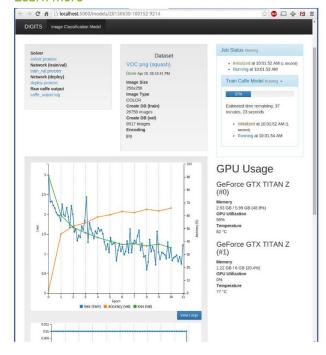
Covering complete workflows for proven application use cases Self-Driving Cars, Healthcare, Intelligent Video Analytics, IoT/Robotics, Finance and more

www.nvidia.com/dli

GPU TECHNOLOGY CONFERENCE

ADVANCE YOUR DEEP LEARNING TRAINING AT GTC

Don't miss the world's most important event for GPU developers


Silicon Valley, May 8-11 Beijing, September 26-27 Munich, October 10-11 Israel, October 18 Washington DC, November 1-2 Tokyo, December 12-13

DEEP LEARNING SOFTWARE

NVIDIA DIGITS™

Interactively manage data and train deep learning models for image classification without the need to write code.

Learn more

Deep Learning Frameworks

Design and train deep learning models using a high-level interface. Choose a deep learning framework that best suits your needs based on your choice of programming language, platform, and target application.

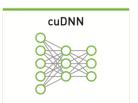
Learn more

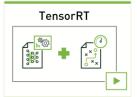
MINERVA

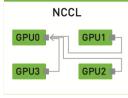
KERAS

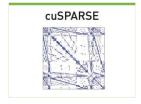
TensorFlow

Purine






NVIDIA Deep Learning SDK


This SDK delivers high- performance multi-GPU acceleration and industry-vetted deep learning algorithms, and is designed for easy drop-in acceleration for deep learning frameworks.

END-TO-END PRODUCT FAMILY

TRAINING **INFERENCE**

FULLY INTERGRATED DL SUPERCOMPUTER

DGX-1

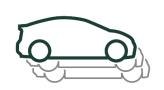
DESKTOP

Titan X Pascal

DATA CENTER

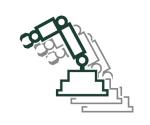
Tesla P100

DATA CENTER



Tesla P100

Tesla P4


AUTOMOTIVE

Drive PX

EMBEDDED

Jetson TX

CHALLENGES

Deep Learning Needs	Why	
Data Scientists	New computing model	
Latest Algorithms	Rapidly evolving	
Fast Training	Impossible -> Practical	
Deployment Platforms	Must be available everywhere	

CHALLENGES

Deep Learning Needs	NVIDIA Delivers	
Data Scientists	Deep Learning Institute, GTC, DIGITS	
Latest Algorithms	DL SDK, GPU-Accelerated Frameworks	
Fast Training	DGX, P100, TITAN X	
Deployment Platforms	TensorRT, P100, P4, Drive PX, Jetson	

READY TO GET STARTED?

Project Checklist

- 1. What problem are you solving, what are the DL tasks?
- 2. On what platform(s) will you train and deploy?
- 3. What data do you have/need, and how is it labeled?
- 4. Which deep learning framework & tools will you use?

WHAT PROBLEM ARE SOLVING?

Defining the AI/DL Tasks

INPUTS	QUESTION	AI/DL TASK	EXAMPLE OUTPUTS
Text Data Images Video Audio	Is "it" <u>present</u> or not?	Detection	Cancer Detection
	What <u>type</u> of thing is "it"?	Classification	Tumor Identification
	To what <u>extent</u> is "it" present?	Segmentation	Tumor Size/Shape Analysis
	What is the likely outcome?	Prediction	Survivability Prediction
	What will likely satisfy the objective?	Recommendation	Therapy Recommendation

SELECTING A DEEP LEARNING FRAMEWORK

Considerations

- Type of problem
- 2. Training & deployment platforms
- DNN models available, layer types supported
- 4. Latest algos & GPU acceleration: cuDNN, NCCL, etc.
- 5. Usage model/interfaces: GUI, command line, programming language, etc.
- 6. Easy to install and get started: containers, docs, code samples, tutorials, ...
- 7. Enterprise integration, vendors, ecosystem

START SIMPLE, LEARN FAST

