Daino: A High-level Framework for Parallel and Efficient AMR on GPUs

Mohamed Wahib1, Naoya Maruyama1,2, Takayuki Aoki2

1RIKEN Advanced Institute for Computational Science, Kobe, Japan
2Tokyo Institute of Technology, GSIC, Tokyo, Japan

11th May 2017
GTC17
Motivation & Problem:
- “AMR is one of the paths to multi-scale exascale applications”
- Producing efficient AMR code is hard (especially for GPU)

Solution:
- A framework for producing efficient AMR code (for GPUs)
- Architecture-independent interface provided to the user
- A speedup model for quantifying the efficiency of AMR code

Key results: We evaluate three AMR applications
- Speedups & scalability comparable to hand-written code (~3,642 K20x GPUs)
Adaptive Mesh Refinement (AMR)

- For meshes in some simulations using PDEs:
 - We only require high resolution for areas of interest
 - Resolution changes dynamically during simulation
 - Achieving efficient AMR is challenging
 - Managing an adaptive mesh can be complicated
 - Balancing compute load and communication costs
Structured Tree-based AMR

- Many ways to represent the mesh
 - We focus on octree representation (quadtree in 2D)
 - Mesh divided into blocks, refine/coarsen if required

Octree-based meshes: (a) Adaptive mesh (b) Tree representation

Operations applied on tree are distributed
How AMR Works

- Initialize the Mesh
- **FOR** Simulation time **DO**
 - **IF** time to remesh
 - **ENDIF**
 - **IF** time to load balance
 - **ENDIF**
- **ENDFOR**

Computation

Remeshing

Load balancing

Reduced Computation (less data in mesh)

Overhead
AMR on GPUs

- Hard to achieve efficient AMR with GPUs

- Few existing AMR frameworks support GPU:
 1. User must provide code optimized for GPU
 2. Scalability problems due to CPU-GPU data movement
 3. No speedup-bound model

Contributions of our framework
Framework for Efficient AMR

- A compiler and runtime

Input:
- Serial code applying stencil on a uniform grid
- User adds directives to identify relevant data arrays
 - Architecture-neutral

Output:
- Executable binary for target architecture
- Code is parallel and optimized for GPU (MPI+CUDA)
#pragma daino

void 3D_alloy(..)
{
 #pragma daino
data (Nx,Ny,Nz)
 {p, u, dpt, no, o;}

 ... kernel code ...
}

AMR frameworks

CUDA code

```c
__global__ 3D_alloy(..)
{
    ... CUDA kernel code ...
}
```

OpenMP Code

```c
void 3D_alloy(..)
{
    #pragma omp for
    ... kernel code ...
}
```

Our framework

Uniform Mesh Serial C Code

```c
#pragma daino kernel
void 3D_alloy(..)
{
    #pragma daino data (Nx,Ny,Nz)
    {p, u, dpt, no, o;}
    ... kernel code ...
}
```

Two benefits:

- Productivity
- Ability to apply low-level GPU optimizations

Framework

GPU AMR Executable

CPU AMR Executable

Framework

GPU AMR Executable

CPU AMR Executable
Minimal example of using directives in our framework

```c
#pragma dno kernel
void func(float ***a, float ***b, ..) {
    #pragma dno data domName(i, j, k)
a, b;
    #pragma dno timeloop
    for(int t; t< TIME_MAX; t++) {
        for(int i; i<NX; i++)
            for(int j; i<NY; j++) {
                ... // comput. not related to a and b
                for(int k; k<NZ; k++) {
                    a[i][j][k] = c * (b[i-1][j][k]
                                      + b[i+1][j][k] + b[i][j][k]
                                      + b[i][j+1][k] + b[i][j-1][k]);
                }
            }
        }
    }
}
```

A target kernel

Data arrays + iterators

Target loop
Scalable AMR: Data-centric Model (1 of 2)

- A data-centric approach
 - Each computing element specializes on its data
 - Blocks on GPU, octree data structure on CPU
 - Migrate all operations touching block data to GPU
 - CPU only processes octree data structure
Scalable AMR: data-centric Model (2 of 2)

- All kernels are data parallel (i.e. well-suited to GPU)

AMR promises reduced computation

- Problem → overhead in managing hierarchal mesh

Project speedup bound

- Informs framework designer of → efficiency of AMR code
 - Compare achieved speedup vs. projected upper-bound speedup

- Takes into account AMR overhead

- If projected speedup ⇐ far from → achieved speedup
 - Some AMR overhead(s) not properly accounted for
Figure 1: Overview of framework implementation

Apply translations and optimizations as passes
The Daino framework overview. Application C code is transformed to an optimized executable. Daino components enclosed in red dotted line.
Runtime Libraries

- AMR Management
 - Maintain the octree
 - Orchestration of work
 - Memory manager
 - Especially important with GPU

- Communication
 - MPI processes
 - Halo data exchange
 - Transparent access to blocks
 - Moving blocks (load balancing)
<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hydrodynamics Solver</td>
<td>A 2(^{nd}) order directionally split hyperbolic schemes to solve Euler equations. [RTVD scheme modified from GAMER(^{1})]</td>
</tr>
<tr>
<td>Shallow-water Solver</td>
<td>We model shallow water simulations by depth-averaging Navier–Stokes equations. [2(^{nd}) order Runge-Kutta method]</td>
</tr>
<tr>
<td>Phase-field Simulation</td>
<td>3D dendritic growth during binary alloy solidification(^{2}) [Time integration by Allen-Chan equation]</td>
</tr>
</tbody>
</table>

Results (1 of 4)

- We use TSUBAME2.5 supercomputer (TokyoTech)
- Up to 3,642 K20x GPUs
- TSUBAME Grand Challenge Category A (full machine)

Weak scaling of uniform mesh, hand-written and automated AMR (GAMER-generated AMR included in hydrodynamic)
Results (2 of 4)

- **Notes:**
 - Phase-field achieves 1.7x speedup
 - Original implementation is Gordon Bell 2011 winner
 - Daino is faster than GAMER AMR version
 - GAMER is a leading framework for AMR over GPUs

Strong scaling of uniform mesh, hand-written and automated AMR (GAMER-generated AMR included in hydrodynamic)
Results (3 of 4)

Overhead of the AMR framework (weak scaling):

<table>
<thead>
<tr>
<th>GPUs</th>
<th>Stencil (GPU)</th>
<th>AMR</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>88.7%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td>87.2%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3600</td>
<td>84.3%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remeshing kernels are well-suited to GPU.
Results (4 of 4)

- Efficiency of transformation:
 - Achieved speedup > 86% of practical limit

Speedup: measured vs. projected. M is measured, P is the practical AMR speedup projection, and T is the theoretical AMR speedup projection.
Summary

Problem:
- AMR is one of the paths to multi-scale exascale applications
- Producing efficient AMR code is hard (especially for GPU)

Solution:
- A framework for producing efficient AMR code (for GPUs)
- Architecture-independent interface provided to the user
- A speedup model for quantifying the efficiency of AMR code

Key results: We evaluate three AMR applications
- Speedups & scalability comparable to hand-written code (3,642 K20x GPUs)
Future Work

- Expand Daino
 - Incorporate Daino’s GPU backend in other AMR framework
 - Work-in-progress for porting new applications (CFD)

- Supporting user-specified boundary conditions, equations of state, and flux corrections

- Extend support for Intel Xeon Phi (KNL)
 - We already introduced experimental support for OpenMP (not fully optimized)

- Leverage the speedup model analysis
 - Auto-tuning

Daino will be publically released at: http://github.com/wahibium/Daino
Thank you for listening.

Questions?