GPU-ACCELERATED DEEP LEARNING FRAMEWORK FOR CYBER-ENABLED MANUFACTURING

ADITYA BALU
SAMBIT GHADAI
SOUMIK SARKAR
ADARSH KRISHNAMURTHY
Outline

Design for Manufacturing

Volumetric Representations for CAD Models

Deep Learning based Design for Manufacturing

Explainable Deep Learning

May 15, 2017
Reducing Product Cost

• Design has a large influence on final product cost

• DFM helps identify production issues early

Source: David Stienstra (Rose-Hulman)
Challenges

• Traditional DFM method involves rule based analysis

• Depends on the experience of the engineers

• Several rules for different processes
Artificial Intelligence for Design for Manufacturing

• Use deep learning to learn non-manufacturable features in a CAD model
 • Learn from examples of manufacturable and non-manufacturable models

• Advantages
 • No explicit hand-crafting of rules
 • Learn complicated rules that are difficult to codify
Feasibility Demonstration – Drilling Holes

• Common manufacturing operations

• Fewer set of design rules
 • Can manually create ground-truth data

• Complex design rules
 • Depth to diameter ratio
 • Blind vs. through holes
 • Proximity of holes to object boundaries
Boundary Representation (B-Rep) CAD Models

- De-facto representation for CAD models
- Can be easily tessellated into triangles for rendering
- Difficult to interpret volumetric information
 - Size of a feature
 - Internal location of a feature
Voxel Representation

• Binary occupancy information
 • Augmented with extra geometry information

• Can be used as direct input to a convolutional neural network

• Require a fast method to voxelize a large number of CAD models
Outline

Design for Manufacturing

Volumetric Representations for CAD Models

Deep Learning based Design for Manufacturing

Explainable Deep Learning
Volumetric Voxelization

• Overlay a regular voxel grid on the object

• Test point membership of the voxel bounding-box center points, classify as *in* or *out*
Point Membership Classification (PMC) Using GPU Slicing

- Use standard PMC using odd ray intersection test
- Slice the object perpendicular to an arbitrary axis
- Render the sliced object and count the number of pixels
- Extend to 3D; Each pixel corresponds to a grid point in a 2D slice
Outline

Design for Manufacturing

Volumetric Representations for CAD Models

Deep Learning based Design for Manufacturing

Explainable Deep Learning
Learning Local Features

• Local Feature learning is different from object recognition

• Variation in features affect the object classification

• Learning the features by semi-supervised learning

Need for 3D Convolutional Nets

• Hierarchical feature extraction from volumetric representation

• Capability to learn features with object classification

• Amenable to model interpretability due to learning of spatial location
Deep Learning Based Design for Manufacturing

- Binary definition of manufacturability (binary cross-entropy loss)
- Choice of input resolution depending on the GPUs
- Architecture
 - 3D convolutional layer and 3D max. pooling layer
 - ReLU activation with output layer having Sigmoid activation
Deep Learning Based Design for Manufacturing

(a) (b) (c) (d) (e) (f)

DLDFM

May 15, 2017
Results

Representative Test Data Non-Manufacturable

- DLDFM (binary)
- DLDFM (Orthogonal Distance Fields)
- DLDFM (binary + normals)

Representative Test Data Manufacturable

- DLDFM (binary)
- DLDFM (Orthogonal Distance Fields)
- DLDFM (binary + normals)

Legend:
- Green: True Negative (Predicted Non-Manufacturable, Actually Non-Manufacturable)
- Red: False Positive (Predicted Manufacturable, Actually Non-Manufacturable)
- Black: True Positive (Predicted Manufacturable, Actually Manufacturable)
- Yellow: False Negative (Predicted Non-Manufacturable, Actually Manufacturable)
Results

Non-Representative Test Data Non-Manufacturable

- DLDFM (binary)
- DLDFM (Orthogonal Distance Fields)
- DLDFM (binary + normals)

Non-Representative Test Data Manufacturable

- DLDFM (binary)
- DLDFM (Orthogonal Distance Fields)
- DLDFM (binary + normals)

- True Negative (Predicted Non-Manufacturable, Actually Non-Manufacturable)
- False Positive (Predicted Manufacturable, Actually Non-Manufacturable)
- True Positive (Predicted Manufacturable, Actually Manufacturable)
- False Negative (Predicted Non-Manufacturable, Actually Manufacturable)
Results

DLDFM (orthogonal distance fields)

DLDFM (binary + normals)

DLDFM (binary)

True Positive (Predicted Manufacturable, Actually Manufacturable)
True Negative (Predicted Non-Manufacturable, Actually Non-Manufacturable)
False Negative (Predicted Non-Manufacturable, Actually Manufacturable)
False Positive (Predicted Manufacturable, Actually Non-Manufacturable)
Outline

Design for Manufacturing

Volumetric Representations for CAD Models

Deep Learning based Design for Manufacturing

Explainable Deep Learning
Model Interpretability

• Possible methods
 • Back-propagation
 • Guided back-propagation, saliency map, etc.

Disadvantage: Not class discriminative

• Grad-CAM
 • Class discriminative

References:

3D Grad-CAM

• Perform global average pooling and back-propagate the activations

Input: Volumetric Representation

Output: Manufacturability

(Yes/No)
Insights from GradCAM
One Hole
Manufacturable

Insight:
3D Grad-CAM is class discriminative
Insight:
DLDFM can predict manufacturability of multiple features simultaneously.

Two Holes
Manufacturable (both)
Insight:

DLDFM can predict manufacturability of individual features

Two Holes
Non-Manufacturable (due to one of them)
Insight:
DLDFM can predict manufacturability of interacting features by generalizing the rules.

Two Holes
Non-Manufacturable (due to interaction between them)
L-Shaped Block with Hole
Non-Manufacturable (close to external face)

Insight:
DLDFM can predict manufacturability based on a local feature instead of external geometry.
Cylindrical-Shaped Block with Hole
Non-Manufacturable (close to external cylindrical face)

Insight:
DLDFM can predict manufacturability based on a local feature even with complicated external geometry.
Demo
Acknowledgements

• AI-based Design and Manufacturability Lab (ADAM Lab)
 • Gavin Young
 • Kin Gwn Lore

• Funding Sources
 • National Science Foundation
 • CMMI:1644441 – CM: Machine-Learning Driven Decision Support in Design for Manufacturability

 • nVIDIA
 • Titan X GPU for Academic Research
Thank You!

Questions?