Real Time American Sign Language Video Captioning using Deep Neural Networks

Syed Tousif Ahmed
BS in Computer Engineering, May 2018
Rochester Institute of Technology
Overview

- Applications
- Video Captioning Architectures
- Implementation Details
- Deployment
Applications
Research at NTID, RIT

Our Team
(clockwise from bottom left):
Anne Alepoudakis
Pamela Francis
Lars Avery
Justin Mahar
Donna Easton
Lisa Elliot
Michael Stinson (P.I.)
Applications

- Messaging app (ASR For Meetings App):
 - Hearing person replies through Automatic Speech Recognition
 - Deaf/Hard of Hearing replies through Video Captioning System

- Automated ASL Proficiency Score
 - ASL learners evaluate their ASL proficiency through the Video Captioning System
Video Captioning Architectures
Figure 2. We propose a stack of two LSTMs that learn a representation of a sequence of frames in order to decode it into a sentence that describes the event in the video. The top LSTM layer (colored red) models visual feature inputs. The second LSTM layer (colored green) models language given the text input and the hidden representation of the video sequence. We use <BOS> to indicate begin-of-sentence and <EOS> for the end-of-sentence tag. Zeros are used as a <pad> when there is no input at the time step.
Lip Reading Sentences in the Wild by Chung et al.

Figure 1. Watch, Listen, Attend and Spell architecture. At each time step, the decoder outputs a character y_i, as well as two attention vectors. The attention vectors are used to select the appropriate period of the input visual and audio sequences.
Adaptive Feature Abstraction for Translating Video to Language by Pu et al.

Figure 1: Illustration of our proposed caption-generation model. The model leverages a fully-connected map from the top layer as well as convolutional maps from different mid-level layers of a pretrained 3D convolutional neural network (C3D).
Similarities and Differences

- **Encoder-Decoder architecture:**
 - Venugopalan encodes RGB frames/Optical flow images in an LSTM layer
 - Chung encodes early fused chunks of grayscale image in an LSTM layer
 - Pu et al. uses C3D

- **Using attention mechanism**
 - Venugopalan doesn’t use one

- **Tips and Tricks**
 - Curriculum Learning
 - Scheduled Sampling
Implementation in TensorFlow
Seq2Seq framework by Denny Britz

- A general framework for implementing sequence to sequence models in TensorFlow
- Encoder, Decoder, Attention etc. in their separate modules
- Heavily software engineered
- Link: https://github.com/google/seq2seq
- Changes: https://github.com/syed-ahmed/seq2seq
ASL Text Data Set - C. Zhang and Y. Tian, CCNY

- Sentence-Video Pairs: **17,258 each video about 5 seconds.**
- Vocab with Byte Pair Encoding and 32,000 Merge Operations: **7949**
- Sentence generated from Automatic Speech Recognition in **Youtube CC**
- Data **not clean.**
- TFRecords link: https://github.com/syed-ahmed/ASL-Text-Dataset-TFRecords
6 Step Recipe

1. Tokenize captions and turn them into word vectors. (Seq2Seq)
2. Put captions and videos as sequences in SequenceExampleProto and create the TFRecords
3. Create the Data Input Pipeline
4. Create the Model (Seq2Seq)
5. Write the training/evaluation/inference script (Seq2Seq)
6. Deploy
6 Step Recipe

1. Tokenize captions and turn them into word vectors. (Seq2Seq)
2. Put captions and videos as sequences in SequenceExampleProto and create the TFRecords
3. Create the Data Input Pipeline
4. Create the Model (Seq2Seq)
5. Write the training/evaluation/inference script (Seq2Seq)
6. Deploy
Go out of business.
Tokenizing Captions and BPE

- Tokens are individual elements in a sequence
- Character level tokens: “I love dogs” = [I, L, O, V, E, D, O, G, S, <SPACE>]
- Word level tokens: “I love dogs” = [I, LOVE, DOGS]
- Use tokenizers to split sentences into tokens
- Common tokenizers: Moses tokenizer.perl script or libraries such as spaCy, nltk or Stanford Tokenizer.
- Apply Byte Pair Encoding (BPE)

https://google.github.io/seq2seq/nmt/#neural-machine-translation-background
Tokenizing Captions and BPE

Follow the script:

https://github.com/google/seq2seq/blob/master/bin/data/wmt16_en_de.sh
6 Step Recipe

1. Tokenize captions and turn them into word vectors. (Seq2Seq)
2. Put captions and videos as sequences in SequenceExampleProto and create the TFRecords
3. Create the Data Input Pipeline
4. Create the Model (Seq2Seq)
5. Write the training/evaluation/inference script (Seq2Seq)
6. Deploy
Encoding Video and Text in TFRecords

- SequenceExample consists of context and feature lists
- Context: width, height, channels etc.
- Feature lists: [frame1, frame2, frame3, ...]; [“What”, “does”, “the”, “fox”, “say”]
- Script:
- Sequence Example Proto Description:
 https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/example/example.proto#L92
def _to_sequence_example(video, decoder):
 """Builds a SequenceExample proto for an video-caption pair.

 Args:
 video: An VideoMetadata object.
 decoder: An ImageDecoder object.

 Returns:
 A SequenceExample proto.
 """
 frames = sorted(_find_files(video.filename, "*.jpg"), key=lambda x: int(filter(str.isdigit, x.split("/"))[-1]))
 feature = {
 "video/encoded_file": tf.train.Feature(bytes_list=tf.train.BytesList(value=[video.encoded_file]))
 }
 feature_lists = tf.train.FeatureLists(feature_list={
 "video/frames": tf.train.FeatureList(feature=[
 tf.train.Feature(bytes_list=tf.train.BytesList(value=[frame]))
 for frame in frames]
 })
 sequence_example = tf.train.SequenceExample(
 context=tf.train.Features(feature=feature),
 feature_lists=feature_lists
)
 return sequence_example
```python
def _bytes_feature(value):
    """Wrapper for inserting a bytes Feature into a SequenceExample proto."""
    if type(value) is unicode:
        return tf.train.Feature(bytes_list=tf.train.BytesList(value=[str(value.encode('utf-8'))]))
    else:
        return tf.train.Feature(bytes_list=tf.train.BytesList(value=[str(value)]))

def _bytes_feature_list(values):
    """Wrapper for inserting a bytes FeatureList into a SequenceExample proto."""
    return tf.train.FeatureList(feature=[_bytes_feature(v) for v in values])
```
Curriculum Learning

model/att_seq2seq/ OptimizeLoss/loss
6 Step Recipe

1. Tokenize captions and turn them into word vectors. (Seq2Seq)
2. Put captions and videos as sequences in SequenceExampleProto and create the TFRecords
3. Create the Data Input Pipeline
4. Create the Model (Seq2Seq)
5. Write the training/evaluation/inference script (Seq2Seq)
6. Deploy
TensorFlow Queues

- Keywords: Queue Runner, Producer Queue, Consumer Queue, Coordinator

- Key concepts that streamlines data fetching

```python
q = tf.FIFOQueue(3, "float")
init = q.enqueue_many(([0.,0.,0.],))

x = q.dequeue()
y = x+1
q_inc = q.enqueue([y])

init.run()
q_inc.run()
q_inc.run()
q_inc.run()
```
Producer-Consumer Pattern
Parsing Data from TFRecords

1. Create a list of TFRecord file names:

```python
data_files = []
for pattern in self.params["file_input_pattern"].split‚"\):
data_files.extend(tf.gfile.Glob(pattern))
```

2. Create a string input producer:

```python
filename_queue = tf.train.string_input_producer(
data_files, shuffle=True, capacity=16)
```
Parsing Data from TFRecords

3. Create the Input Random Shuffle Queue

```python
values_queue = tf.RandomShuffleQueue(
    capacity=capacity,
    min_after_dequeue=min_queue_examples,
    dtypes=[tf.string],
    name="random_" + value_queue_name)
```

4. Fill it with the serialized data from TFRecords

```python
_, value = reader.read(filename_queue)
enqueue_ops.append(values_queue.enqueue([value]))
tf.train.queue_runner.add_queue_runner(tf.train.queue_runner.QueueRunner(
    values_queue, enqueue_ops))
```
Parsing Data from TFRecords

5. Parse the caption and jpeg encoded video frames

```python
context, sequence = tf.parse_single_sequence_example(
    serialized,
    context_features={
        caption_feature: tf.FixedLenFeature([], dtype=tf.string)
    },
    sequence_features={
        video_feature: tf.FixedLenSequenceFeature([], dtype=tf.string),
    }
)

caption = context[caption_feature]
encoded_video = sequence[video_feature]
```
Using `tf.map_fn` for Video Processing

```
tf.map_fn(lambda x: tf.image.convert_image_dtype(x, dtype=tf.float32), video, dtype=tf.float32)
```
Data Processing, Augmentation and Early Fusion

Hue
[10x120x120x3]

Contrast
[10x120x120x3]

Normalization
[10x120x120x3]

Grayscale
[10x120x120x1]

Early Fusion
(reshape+concat)
[2x5x120x120x1]
[2x120x120x5]
Bucket by Sequence Length

- Sequences are of variable length
- Need to pad the sequences
- Solution: Bucketing

```python
_, batch = tf.contrib.training.bucket_by_sequence_length(
    input_length=features_and_labels["source_len"],
    bucket_boundaries=bucket_boundaries,
    tensors=features_and_labels,
    batch_size=batch_size,
    keep_input=features_and_labels["source_len"] >= 1,
    dynamic_pad=True,
    capacity=5000 + 16 * batch_size,
    allow_smaller_final_batch=allow_smaller_final_batch,
    name="bucket_queue")
```
Before:

```python
features_and_labels = {dict} {u'target_tokens': <tf.Tensor 'input_fn(concat_1:0) shape=(?,) dtype=string>, u'target_len': <tf.Tensor len = (int) 4

u'source_len' (4837144592) = {Tensor} Tensor("input_fn/strided_slice:0", shape=(), dtype=int32)

u'source_tokens' (4837144496) = {Tensor} Tensor("input_fn/VGG-M/logits/flatten/Reshape:0", shape=(?, 512), dtype=float32)

u'target_len' (4837144160) = {Tensor} Tensor("input_fn/Size_1:0", shape=(), dtype=int32)

u'target_tokens' (4837144112) = {Tensor} Tensor("input_fn/concat_1:0", shape=(?,), dtype=string)
```

After:

```python
batch = {dict} {u'target_len': <tf.Tensor 'input_fn/bucket_queue/bucket/dequeue_top:4' shape=(32,) dtype=int32>, u'source_len': <tf.Tensor len = (int) 4

u'source_len' (4649515024) = {Tensor} Tensor("input_fn/bucket_queue/bucket/dequeue_top:2", shape=(32,), dtype=int32)

u'source_tokens' (4649514928) = {Tensor} Tensor("input_fn/bucket_queue/bucket/dequeue_top:3", shape=(32, ?, 512), dtype=float32)

u'target_len' (4649514592) = {Tensor} Tensor("input_fn/bucket_queue/bucket/dequeue_top:4", shape=(32,), dtype=int32)

u'target_tokens' (4649514544) = {Tensor} Tensor("input_fn/bucket_queue/bucket/dequeue_top:5", shape=(32, ?), dtype=string)
```
6 Step Recipe

1. Tokenize captions and turn them into word vectors. (Seq2Seq)
2. Put captions and videos as sequences in SequenceExampleProto and create the TFRecords
3. Create the Data Input Pipeline
4. Create the Model (Seq2Seq)
5. Write the training/evaluation/inference script (Seq2Seq)
6. Deploy
Seq2Seq Summary

- Encoder takes an embedding as an input. For instance: our video embedding is of shape (batch size, sequence length, 512)

- Decoder takes last state of the encoder

- Attention mechanism calculates attention function on the encoder outputs
ASL Model Summary

- Encoder-Decoder Architecture
- VGG-M encodes *early fused grayscale* frames (sliding windows of 5 frames)
- 2 Layer RNN with 512 LSTM units in the Encoder
- 2 Layer RNN with 512 LSTM units in the Decoder
- Decoder uses *attention* mechanism from Bahdanau et al.
VGG-M/conv1/BatchNorm/beta (96, 96/96 params)
VGG-M/conv1/weights (3x3x5x96, 4.32k/4.32k params)
VGG-M/conv2/BatchNorm/beta (256, 256/256 params)
VGG-M/conv2/weights (3x3x96x256, 221.18k/221.18k params)
VGG-M/conv3/BatchNorm/beta (512, 512/512 params)
VGG-M/conv3/weights (3x3x256x512, 1.18m/1.18m params)
VGG-M/conv4/BatchNorm/beta (512, 512/512 params)
VGG-M/conv4/weights (3x3x512x512, 2.36m/2.36m params)
VGG-M/conv5/BatchNorm/beta (512, 512/512 params)
VGG-M/conv5/weights (3x3x512x512, 2.36m/2.36m params)
VGG-M/fc6/BatchNorm/beta (512, 512/512 params)
VGG-M/fc6/weights (6x6x512x512, 9.44m/9.44m params)

34.21 million parameters
model/att_seq2seq/Variable (1, 1/1 params)
model/att_seq2seq/decode/attention/att_keys/biases (512, 512/512 params)
model/att_seq2seq/decode/attention/att_keys/weights (512x512, 262.14k/262.14k params)
model/att_seq2seq/decode/attention/att_query/biases (512, 512/512 params)
model/att_seq2seq/decode/attention/att_query/weights (512x512, 262.14k/262.14k params)
model/att_seq2seq/decode/attention/v_att (512, 512/512 params)
model/att_seq2seq/decode/attention_decoder/decoder/attention_mix/biases (512, 512/512 params)
model/att_seq2seq/decode/attention_decoder/decoder/attention_mix/weights (1024x512, 524.29k/524.29k params)
model/att_seq2seq/decode/attention_decoder/decoder/extended_multi_rnn_cell/cell_0/lstm_cell/biases (2048, 2.05k/2.05k params)
model/att_seq2seq/decode/attention_decoder/decoder/extended_multi_rnn_cell/cell_0/lstm_cell/weights (1536x2048, 3.15m/3.15m params)
model/att_seq2seq/decode/attention_decoder/decoder/extended_multi_rnn_cell/cell_1/lstm_cell/biases (2048, 2.05k/2.05k params)
model/att_seq2seq/decode/attention_decoder/decoder/extended_multi_rnn_cell/cell_1/lstm_cell/weights (1024x2048, 2.10m/2.10m params)
model/att_seq2seq/decode/attention_decoder/decoder/logits/biases (7952, 7.95k/7.95k params)
model/att_seq2seq/decode/attention_decoder/decoder/logits/weights (512x7952, 4.07m/4.07m params)
model/att_seq2seq/decode/target_embedding/W (7952x512, 4.07m/4.07m params)
Train using tf.Estimator and tf.Experiment

```python
estimator = tf.contrib.learn.Estimator(
    model_fn=model_fn,
    model_dir=output_dir,
    config=config,
    params=FLAGS.model_params)

experiment = PatchedExperiment(
    estimator=estimator,
    train_input_fn=train_input_fn,
    eval_input_fn=eval_input_fn,
    min_eval_frequency=FLAGS.eval_every_n_steps,
    train_steps=FLAGS.train_steps,
    eval_steps=None,
    eval_metrics=eval_metrics,
    train_monitors=train_hooks)
```
6 Step Recipe

1. Tokenize captions and turn them into word vectors. (Seq2Seq)
2. Put captions and videos as sequences in SequenceExampleProto and create the TFRecords
3. Create the Data Input Pipeline
4. Create the Model (Seq2Seq)
5. Write the training/evaluation/inference script (Seq2Seq)
6. Deploy
NVIDIA Jetson TX2

- Install TensorFlow: https://syed-ahmed.gitbooks.io/nvidia-jetson-tx2-recipes/content/first-question.html

- USB camera using CUDA V4L2 Driver

- Put graph in GPU

- TensorFlow XLA can potentially speed up application
Thank you!

Email: syed.ahmed.emails@gmail.com
Twitter: @tousifsays