
8-bit Inference with TensorRT
Szymon Migacz, NVIDIA
May 8, 2017

Intro

● Goal: Convert FP32 CNNs into INT8 without significant accuracy loss.

● Why: INT8 math has higher throughput, and lower memory requirements.

● Challenge: INT8 has significantly lower precision and dynamic range than

FP32.

● Solution: Minimize loss of information when quantizing trained model

weights to INT8 and during INT8 computation of activations.

● Result: Method was implemented in TensorRT. It does not require any

additional fine tuning or retraining.

Outline

● INT8 compute

● Quantization

● Calibration

● Workflow in TensorRT

● Results

INT8 Inference

Challenge

● INT8 has significantly lower precision and dynamic range compared to FP32.

● Requires more than a simple type conversion from FP32 to INT8.

Dynamic Range Min Positive Value

FP32 -3.4 x 1038 ~ +3.4 x 1038 1.4 x 10-45

FP16 -65504 ~ +65504 5.96 x 10-8

INT8 -128 ~ +127 1

High-throughput INT8 math

● Requires sm_61+ (Pascal TitanX, GTX 1080, Tesla P4, P40 and others).

● Four-way byte dot product accumulated in 32-bit result.

int8 int8 int8 int8

int8 int8 int8 int8

int32

A

B
Result += A[0] * B[0] +
 A[1] * B[1] +
 A[2] * B[2] +
 A[3] * B[3]

DP4A - INT8 dot product

Context

● Performance.

● No accuracy loss.

● Hence solution has to be “simple” and compute efficient.

Linear quantization

Representation:

Tensor Values = FP32 scale factor * int8 array + FP32 bias

Do we really need bias?
Two matrices:

A = scale_A * QA + bias_A
B = scale_B * QB + bias_B

Let’s multiply those 2 matrices:

A * B = scale_A * scale_B * QA * QB +
 scale_A * QA * bias_B +
 scale_B * QB * bias_A +
 bias_A * bias_B

Do we really need bias?
Two matrices:

A = scale_A * QA + bias_A
B = scale_B * QB + bias_B

Let’s multiply those 2 matrices:

A * B = scale_A * scale_B * QA * QB +
 scale_A * QA * bias_B +
 scale_B * QB * bias_A +
 bias_A * bias_B

Do we really need bias? No!
Two matrices:

A = scale_A * QA
B = scale_B * QB

Let’s multiply those 2 matrices:

A * B = scale_A * scale_B * QA * QB

Symmetric linear quantization

 Representation:

Tensor Values = FP32 scale factor * int8 array

One FP32 scale factor for the entire int8 tensor

Q: How do we set scale factor?

Quantization

● No saturation: map |max| to 127

0.0 +|max|-|max|

0-127 127

Quantization

● No saturation: map |max| to 127

0.0 +|max|-|max|

0-127 127

● Significant accuracy loss, in general

Quantization

● No saturation: map |max| to 127 ● Saturate above |threshold| to 127

0.0 +|max|-|max|

0-127 127

● Significant accuracy loss, in general

0.0 +|T|-|T|

0-127 127

Quantization

● No saturation: map |max| to 127 ● Saturate above |threshold| to 127

0.0 +|max|-|max|

0-127 127

● Significant accuracy loss, in general

0.0 +|T|-|T|

0-127 127

● Weights: no accuracy improvement
● Activations: improved accuracy
● Which |threshold| is optimal?

Q: How to optimize threshold selection?
● It’s always a tradeoff between range and precision of the INT8 representation.

A: Minimize information loss, since FP32 → INT8 is just re-encoding information.

“Relative Entropy” of two encodings

● INT8 model encodes the same information as the original FP32 model.

● We want to minimize loss of information.

● Loss of information is measured by Kullback-Leibler divergence (AKA

relative entropy or information divergence).

○ P, Q - two discrete probability distributions.

○ KL_divergence(P,Q):= SUM(P[i] * log(P[i] / Q[i]), i)

● Intuition: KL divergence measures the amount of information lost when

approximating a given encoding.

Solution: Calibration
● Run FP32 inference on Calibration Dataset.

● For each Layer:

○ collect histograms of activations.

○ generate many quantized distributions

with different saturation thresholds.

○ pick threshold which minimizes

KL_divergence(ref_distr, quant_distr).

● Entire process takes a few minutes on a

typical desktop workstation.

Calibration Dataset

● Representative.

● Diverse.

● Ideally a subset of validation dataset.

● 1000s of samples

Results from Calibration

Results From Calibration #1

Results From Calibration #2

Results From Calibration #2

Before saturation After saturation

Results From Calibration #3

Results From Calibration #4

Results From Calibration #5

Workflow in TensorRT

Typical workflow in TensorRT

● You will need:

○ Model trained in FP32.

○ Calibration dataset.

● TensorRT will:

○ Run inference in FP32 on calibration dataset.

○ Collect required statistics.

○ Run calibration algorithm → optimal scaling factors.

○ Quantize FP32 weights → INT8.

○ Generate “CalibrationTable” and INT8 execution engine.

Results

Results - Accuracy
FP32 INT8

Calibration using 5 batches Calibration using 10 batches Calibration using 50 batches
NETWORK Top1 Top5 Top1 Top5 Top1 Top5 Top1 Top5
Resnet-50 73.23% 91.18% 73.03% 91.15% 73.02% 91.06% 73.10% 91.06%
Resnet-101 74.39% 91.78% 74.52% 91.64% 74.38% 91.70% 74.40% 91.73%
Resnet-152 74.78% 91.82% 74.62% 91.82% 74.66% 91.82% 74.70% 91.78%
VGG-19 68.41% 88.78% 68.42% 88.69% 68.42% 88.67% 68.38% 88.70%
Googlenet 68.57% 88.83% 68.21% 88.67% 68.10% 88.58% 68.12% 88.64%
Alexnet 57.08% 80.06% 57.00% 79.98% 57.00% 79.98% 57.05% 80.06%
NETWORK Top1 Top5 Diff Top1 Diff Top5 Diff Top1 Diff Top5 Diff Top1 Diff Top5
Resnet-50 73.23% 91.18% 0.20% 0.03% 0.22% 0.13% 0.13% 0.12%
Resnet-101 74.39% 91.78% -0.13% 0.14% 0.01% 0.09% -0.01% 0.06%
Resnet-152 74.78% 91.82% 0.15% 0.01% 0.11% 0.01% 0.08% 0.05%
VGG-19 68.41% 88.78% -0.02% 0.09% -0.01% 0.10% 0.03% 0.07%
Googlenet 68.57% 88.83% 0.36% 0.16% 0.46% 0.25% 0.45% 0.19%
Alexnet 57.08% 80.06% 0.08% 0.08% 0.08% 0.07% 0.03% -0.01%

TensorRT 2.1, all optimizations enabled. ILSVRC2012 validation dataset, batch = 25 images.
Accuracy was measured on 500 batches which were not used for the calibration.

Results - Performance

TensorRT 2.1, all optimizations enabled.

Open challenges / improvements

● Unsigned int8 for activations after ReLU.

● RNNs → open research problem.

● Fine tuning of saturation thresholds.

● Expose API for accepting custom, user provided scale factors.

Conclusion

● We introduced an automated, parameterless method for converting FP32

CNN models into INT8.

● Symmetric, linear quantization for weights and activations.

● Quantize original FP32 data such that the information loss is minimized.

● Popular, publicly available CNN models trained in FP32 can be converted to

INT8, accuracy of INT8 models is comparable with the FP32 baseline.

Additional Resources
● We are going to publish whitepaper with description of the method.

● TensorRT 2.1 is going to be released soon.

● TensorRT 2.1 → sampleINT8.

● S7458 - DEPLOYING UNIQUE DL NETWORKS AS MICRO-SERVICES WITH

TENSORRT, USER EXTENSIBLE LAYERS, AND GPU REST ENGINE.

○ Tuesday, May 9, 4:30 PM - 4:55 PM.

● Connect With The Experts:

○ Monday, May 8, 2:00 PM - 3:00 PM, Pod B.

○ Tuesday, May 9, 2:00 PM - 3:00 PM, Pod C.

○ Wednesday, May 10, 3:00 PM - 4:00 PM, Pod B.

Thank You

Backup slides

Entropy Calibration - pseudocode
Input: FP32 histogram H with 2048 bins: bin[0], …, bin[2047]

For i in range(128 , 2048):
reference_distribution_P = [bin[0] , ..., bin[i-1]] // take first ‘ i ‘ bins from H
outliers_count = sum(bin[i] , bin[i+1] , … , bin[2047])
reference_distribution_P[i-1] += outliers_count
P /= sum(P) // normalize distribution P
candidate_distribution_Q = quantize [bin[0], …, bin[i-1]] into 128 levels // explained later
expand candidate_distribution_Q to ‘ i ’ bins // explained later
Q /= sum(Q) // normalize distribution Q
divergence[i] = KL_divergence(reference_distribution_P, candidate_distribution_Q)

End For

Find index ‘m’ for which divergence[m] is minimal

threshold = (m + 0.5) * (width of a bin)

Candidate distribution Q
● KL_divergence(P, Q) requires that len(P) == len(Q)
● Candidate distribution Q is generated after merging ‘ i ’ bins from bin[0] to

bin[i-1] into 128 bins
● Afterwards Q has to be ‘expanded’ again into ‘i’ bins

Here is a simple example: reference distribution P consisting of 8 bins, we want to quantize into 2 bins:
P = [1, 0, 2, 3, 5, 3, 1, 7]

we merge into 2 bins (8 / 2 = 4 consecutive bins are merged into one bin)
[1 + 0 + 2 + 3 , 5 + 3 + 1 + 7] = [6, 16]

then proportionally expand back to 8 bins, we preserve empty bins from the original distribution P:
Q = [6/3, 0, 6/3, 6/3, 16/4, 16/4, 16/4, 16/4] = [2, 0, 2, 2, 4, 4, 4, 4]

now we should normalize both distributions, after that we can compute KL_divergence
P /= sum(P) Q /= sum(Q)
result = KL_divergence(P, Q)

Pseudocode for the INT8 conv kernel
// I8 input tensors: I8_input, I8_weights, I8 output tensors: I8_output
// F32 bias (original bias from the F32 model)
// F32 scaling factors: input_scale, output_scale, weights_scale[K]

I32_gemm_out = I8_input * I8_weights // Compute INT8 GEMM (DP4A)

F32_gemm_out = (float)I32_gemm_out // Cast I32 GEMM output to F32 float

// At this point we have F32_gemm_out which is scaled by (input_scale * weights_scale[K]),
// but to store the final result in int8 we need to have scale equal to "output_scale", so we have to rescale:
// (this multiplication is done in F32, *_gemm_out arrays are in NCHW format)
For i in 0, ... K-1:

rescaled_F32_gemm_out[:, i, :, :] = F32_gemm_out[:, i, :, :] * [output_scale / (input_scale * weights_scale[i])]

// Add bias, to perform addition we have to rescale original F32 bias so that it's scaled with "output_scale"
rescaled_F32_gemm_out _with_bias = rescaled_F32_gemm_out + output_scale * bias

// Perform ReLU (in F32)
F32_result = ReLU(rescaled_F32_gemm_out _with_bias)

// Convert to INT8 and save to global
I8_output = Saturate(Round_to_nearest_integer(F32_result))

Results - Performance - Pascal Titan X

batchsize = 1 batchsize = 2 batchsize = 8 batchsize = 32 batchsize = 128

Network
INT8

[img/s]
FP32

[img/s] Ratio
INT8

[img/s]
FP32

[img/s] Ratio
INT8

[img/s]
FP32

[img/s] Ratio
INT8

[img/s]
FP32

[img/s] Ratio
INT8

[img/s]
FP32

[img/s] Ratio

Resnet-50 562 415 1.354 1045 572 1.825 2572 938 2.741 3567 1126 3.166 3787 1156 3.276

Resnet-152 195 157 1.242 371 205 1.807 1017 357 2.850 1335 415 3.220 1437 436 3.299

VGG-16 393 261 1.508 606 257 2.361 984 382 2.577 1131 416 2.722 1178 426 2.764

VGG-19 345 221 1.559 523 222 2.358 812 311 2.608 916 336 2.729 946 339 2.789

Googlenet 945 913 1.035 1756 1163 1.510 4356 1737 2.508 6545 2300 2.846 7282 2499 2.914

Alexnet 972 823 1.181 1913 1534 1.247 6434 3638 1.768 13899 4758 2.921 18714 5882 3.181

TensorRT FP32 vs TensorRT INT8
Pascal TitanX

Results - Performance - DRIVE PX 2, dGPU

batchsize = 1 batchsize = 2 batchsize = 4 batchsize = 16 batchsize = 128

Network
INT8

[img/s]
FP32

[img/s] Ratio
INT8

[img/s]
FP32

[img/s] Ratio
INT8

[img/s]
FP32

[img/s] Ratio
INT8

[img/s]
FP32

[img/s] Ratio
INT8

[img/s]
FP32

[img/s] Ratio

Resnet-50 295 148 1.996 462 181 2.552 627 204 3.075 811 233 3.477 902 249 3.621

Resnet-152 110 59 1.871 179 68 2.617 239 79 3.039 318 91 3.496 356 97 3.674

VGG-16 130 47 2.757 189 62 3.029 229 71 3.220 286 84 3.411 DNR DNR

VGG-19 114 41 2.797 162 52 3.117 191 58 3.296 233 67 3.464 DNR DNR

Googlenet 497 306 1.622 777 364 2.131 1131 408 2.769 1576 497 3.170 1784 529 3.375

Alexnet 436 202 2.164 828 348 2.381 1458 570 2.561 3106 844 3.682 4853 1382 3.510

TensorRT FP32 vs TensorRT INT8
DRIVE PX 2, dGPU

