
1

Nikolay Sakharnykh - May 10, 2017

UNIFIED MEMORY ON
PASCAL AND VOLTA

2

HETEROGENEOUS ARCHITECTURES

GPU 0

MEM

CPU

SYS MEM

GPU 0

GPU 1

MEM

GPU 1

GPU 2

MEM

GPU 2

3

UNIFIED MEMORY FUNDAMENTALS
Single Pointer

CPU code GPU code

void *data;
data = malloc(N);

cpu_func1(data, N);

cpu_func2(data, N);

cpu_func3(data, N);

free(data);

void *data;
data = malloc(N);

cpu_func1(data, N);

gpu_func2<<<...>>>(data, N);
cudaDeviceSynchronize();

cpu_func3(data, N);

free(data);

4

UNIFIED MEMORY FUNDAMENTALS
Single Pointer

Explicit Memory
Management

Unified Memory

void *h_data, *d_data;
h_data = malloc(N);
cudaMalloc(&d_data, N);
cpu_func1(h_data, N);
cudaMemcpy(d_data, h_data, N, ...)
gpu_func2<<<...>>>(data, N);

cudaMemcpy(h_data, d_data, N, ...)
cpu_func3(h_data, N);

free(h_data);
cudaFree(d_data);

void *data;
data = malloc(N);

cpu_func1(data, N);

gpu_func2<<<...>>>(data, N);
cudaDeviceSynchronize();

cpu_func3(data, N);

free(data);

5

UNIFIED MEMORY FUNDAMENTALS
Deep Copy Nightmare

Explicit Memory
Management

Unified Memory

char **data;
data = (char**)malloc(N*sizeof(char*));
for (int i = 0; i < N; i++)

data[i] = (char*)malloc(N);

char **d_data;
char **h_data = (char**)malloc(N*sizeof(char*));
for (int i = 0; i < N; i++) {

cudaMalloc(&h_data2[i], N);
cudaMemcpy(h_data2[i], h_data[i], N, ...);

}
cudaMalloc(&d_data, N*sizeof(char*));
cudaMemcpy(d_data, h_data2, N*sizeof(char*), ...);

gpu_func<<<...>>>(data, N);

char **data;
data = (char**)malloc(N*sizeof(char*));
for (int i = 0; i < N; i++)

data[i] = (char*)malloc(N);

gpu_func<<<...>>>(data, N);

6

UNIFIED MEMORY FUNDAMENTALS
On-Demand Migration

page1

page2

page3

page1

page2

page3

proc A proc B

memory A memory B

7

UNIFIED MEMORY FUNDAMENTALS
On-Demand Migration

page1

page2

page3

page1

page2

page3

*addr1 = 1

local access

*addr3 = 1

page fault

proc A proc B

memory A memory B

8

UNIFIED MEMORY FUNDAMENTALS
On-Demand Migration

page1

page2

page3

page1

page2

page3
*addr3 = 1

page is populated

proc A proc B

memory A memory B

9

UNIFIED MEMORY FUNDAMENTALS
On-Demand Migration

page1

page2

page3

page1

page2

page3

*addr2 = 1

*addr3 = 1

page fault

page fault

proc A proc B

memory A memory B

10

UNIFIED MEMORY FUNDAMENTALS
On-Demand Migration

page1

page2

page3

page1

page2

page3

*addr2 = 1

*addr3 = 1

page migration

page migrationpage fault

page fault

proc A proc B

memory A memory B

11

UNIFIED MEMORY FUNDAMENTALS
On-Demand Migration

page1

page2

page3

page1

page2

page3

proc A proc B
*addr2 = 1

*addr3 = 1

local access

local access

memory A memory B

12

UNIFIED MEMORY FUNDAMENTALS

When it doesn’t matter how data moves to a processor

1) Quick and dirty algorithm prototyping

2) Iterative process with lots of data reuse, migration cost can be amortized

3) Simplify application debugging

When it’s difficult to isolate the working set

1) Irregular or dynamic data structures, unpredictable access

2) Data partitioning between multiple processors

When Is This Helpful?

13

UNIFIED MEMORY FUNDAMENTALS
Memory Oversubscription

proc A proc B

*addr3 = 1

page fault

physical

memory

capacity

is full

memory A memory B

14

UNIFIED MEMORY FUNDAMENTALS
Memory Oversubscription

proc A proc B

*addr3 = 1

page fault

page eviction

physical

memory

capacity

is full

memory A memory B

15

UNIFIED MEMORY FUNDAMENTALS
Memory Oversubscription

proc A proc B

*addr3 = 1

page fault
page migration

memory A memory B

16

UNIFIED MEMORY FUNDAMENTALS
Memory Oversubscription

proc A proc B

physical

memory

capacity

is full

memory A memory B

17

UNIFIED MEMORY FUNDAMENTALS

When you have large dataset and not enough physical memory

Moving pieces by hand is error-prone and requires tuning for memory size

Better to run slowly than get fail with out-of-memory error

You can actually get high performance with Unified Memory!

Memory Oversubscription Benefits

18

UNIFIED MEMORY FUNDAMENTALS
System-Wide Atomics with Exclusive Access

page1

page2

page3

page1

page2

page3

memory A memory B

proc A proc B

atomicAdd_system

(addr2, 1)

page fault local access

atomicAdd_system

(addr2, 1)

19

UNIFIED MEMORY FUNDAMENTALS
System-Wide Atomics with Exclusive Access

page1

page2

page3

page1

page2

page3

memory A memory B

atomicAdd_system

(addr2, 1)

page fault page migration

proc A proc B

20

UNIFIED MEMORY FUNDAMENTALS
System-Wide Atomics with Exclusive Access

page1

page2

page3

page1

page2

page3

memory A memory B

local access

proc A proc B

atomicAdd_system

(addr2, 1)

21

UNIFIED MEMORY FUNDAMENTALS
System-Wide Atomics over NVLINK*

page1

page2

page3

page1

page2

page3

memory A memory B

remote access local access

proc A proc B

atomicAdd_system

(addr2, 1)

atomicAdd_system

(addr2, 1)

*both processors need to support atomic operations

22

UNIFIED MEMORY FUNDAMENTALS

GPUs are very good at handling atomics from thousands of threads

Makes sense to utilize atomics between GPUs or between CPU and GPU

We will see this in action on a realistic example later on

System-Wide Atomics

23

AGENDA

Unified Memory Fundamentals

Under the Hood Details

Performance Analysis and Optimizations

Applications Deep Dive

24

UNIFIED MEMORY ALLOCATOR

CUDA C: cudaMallocManaged is your most reliable way to opt in today

CUDA Fortran: managed attribute (per allocation)

OpenACC: -ta=managed compiler option (all dynamic allocations)

malloc support is coming on Pascal+ architectures (Linux only)

Note: you can write your own malloc hook to use cudaMallocManaged

Available Options

25

HETEROGEENOUS MEMORY MANAGER

Heterogeneous Memory Manager: a set of Linux kernel patches

Allows GPUs to access all system memory (malloc, stack, file system)

Page migration will be triggered the same way as for cudaMallocManaged

Ongoing testing and reviews, planning next phase of optimizations

More details on HMM today at 4:00 in Room 211B by John Hubbard

Work In Progress

26

UNIFIED MEMORY
Evolution of GPU Architectures

2012 2014 2016 2017

Kepler
First release of

the new “single-
pointer”

programming
model

Maxwell
No new features

related to Unified
Memory Pascal

On-demand
migration,

oversubscription,
system-wide

atomics

Volta
Access counters,

copy engine
faults, cache

coherence, ATS
support

NVLINK1

NVLINK2

27

UNIFIED MEMORY ON KEPLER

Kepler GPU: no page fault support, limited virtual space

Available since CUDA 6

page1

page2

page3

page1

page2

page3

memory A memory B

GPU CPU

28

UNIFIED MEMORY ON KEPLER

Bulk migration of all pages attached to current stream on kernel launch

Available since CUDA 6

page1

page2

page3

page1

page2

page3

memory A memory B

kernel

launch

page migration

page migration

GPU CPU

29

UNIFIED MEMORY ON KEPLER

No on-demand migration for the GPU, no oversubscription, no system-wide atomics

Available since CUDA 6

page1

page2

page3

page1

page2

page3

memory A memory B

local access
GPU CPU

local access

30

UNIFIED MEMORY ON PASCAL

Pascal GPU: page fault support, extended virtual address space (48-bit)

Available since CUDA 8

page1

page2

page3

page1

page2

page3

memory A memory B

proc A proc B

31

UNIFIED MEMORY ON PASCAL

On-demand migration to accessing processor on first touch

Available since CUDA 8

page1

page2

page3

page1

page2

page3

memory A memory B

local access
proc A proc B

page fault page migration

32

UNIFIED MEMORY ON PASCAL

All features: on-demand migration, oversubscription, system-wide atomics

Available since CUDA 8

page1

page2

page3

page1

page2

page3

memory A memory B

proc A proc B

local access

33

UNIFIED MEMORY ON VOLTA

Volta GPU: uses fault on first touch for migration, same as Pascal

Default model

GPU CPU

page1

page2

page3

page1

page2

page3

local access

page fault page migration

GPU memory CPU memory

34

UNIFIED MEMORY ON VOLTA

If memory is mapped to the GPU, migration can be triggered by access counters

New Feature: Access Counters

page1

page2

page3

page1

page2

page3

GPU CPU

remote access

remote access

local access

GPU memory CPU memory

35

UNIFIED MEMORY ON VOLTA

With access counters migration only hot pages will be moved to the GPU

New Feature: Access Counters

page1

page2

page3

page1

page2

page3

GPU CPU

page migration
local access

GPU memory CPU memory

36

UNIFIED MEMORY ON VOLTA+P9

CPU can directly access and cache GPU memory; native CPU-GPU atomics

NVLINK2: Cache Coherence

page1

page2

page3

page1

page2

page3

GPU memory CPU memory

GPU CPU

local access

remote access

remote access

37

DRIVER HEURISTICS

The Unified Memory driver is doing intelligent things under the hood:

Prefetching: migrate pages proactively to reduce number of faults

Thrashing mitigation: heuristics to avoid frequent migration of shared pages

Eviction: what pages to evict when we need to make the room for new ones

You can’t control them but you can override most of these with hints

Things You Didn’t Know Exist

38

DRIVER PREFETCHING

GPU architecture supports different page sizes

Contiguous pages up to a larger page size are promoted to the larger size

Driver prefetches whole regions if pages are accessed densely

Do Not Confuse with API-prefetching

GPU

CPU

39

Processors share the same page and frequently read or write to it

Pascal: when memory is pinned we lose any insight into access pattern

Volta: can use access counters information to find a better location

ANTI-THRASHING POLICY
Frequent Access to Shared Data

GPU

CPU

CPU throttle

pin to

CPU

40

Driver keeps a single list of physical chunks of GPU memory

Chunks from the front of the list are evicted first (LRU)

A chunk is considered “in use” when it is fully-populated or migrated

EVICTION ALGORITHM
What Pages Are Moving Out of the GPU

eviction

allocation

migration to the GPU

41

AGENDA

Unified Memory Fundamentals

Under the Hood Details

Performance Analysis and Optimizations

Applications Deep Dive

42

PROFILER: INSPECT

43

PROFILER: FILTER

44

PROFILER: CORRELATE

More details tomorrow at 10:00 in Marriott Salon 3

45

USER HINTS

If you know your application well you can optimize with hints

These are also useful to override some of the driver heuristics

cudaMemPrefetchAsync(ptr, size, processor, stream)

Similar to move_pages() in Linux

cudaMemAdvise(ptr, size, advice, processor)

Similar to madvise() in Linux

Why, When, and How to Use Them

46

USER HINTS
Prefetching

char *data;
cudaMallocManaged(&data, N);

init_data(data, N);

cudaMemPrefetchAsync(data, N, myGpuId, s);
mykernel<<<..., s>>>(data, N);
cudaMemPrefetchAsync(data, N, cudaCpuDeviceId, s);
cudaStreamSynchronize(s);

use_data(data, N);

cudaFree(data);

Page faults can be expensive

and they stall SM execution

Avoid faults by prefetching data

to the accessing processor

GPU

CPU

CPU

47

USER HINTS
Read Mostly

char *data;
cudaMallocManaged(&data, N);

init_data(data, N);

cudaMemAdvise(data, N, ..SetReadMostly, myGpuId);
cudaMemPrefetchAsync(data, N, myGpuId, s);
mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

In this case prefetch creates a

copy instead of moving data

Both processors can read data

simultaneously without faults

Writes are allowed but they are

expensive

GPU

CPU

CPU

48

USER HINTS
Preferred Location

char *data;
cudaMallocManaged(&data, N);

init_data(data, N);

cudaMemAdvise(data, N, ..PreferredLocation, cudaCpuDeviceId);

mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

Here the kernel will page fault

and generate direct mapping to

data on the CPU

The driver will “resist”

migrating data away from the

preferred location

GPU

CPU

CPU

49

USER HINTS
Accessed By

char *data;
cudaMallocManaged(&data, N);

init_data(data, N);

cudaMemAdvise(data, N, ..SetAccessedBy, myGpuId);

mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

GPU will establish direct mapping of

data in CPU memory, no page faults

will be generated

Memory can move freely to other

processors and mapping will carry

over

GPU

CPU

CPU

50

USER HINTS
Accessed By on Volta

char *data;
cudaMallocManaged(&data, N);

init_data(data, N);

cudaMemAdvise(data, N, ..SetAccessedBy, myGpuId);

mykernel<<<..., s>>>(data, N);

use_data(data, N);

cudaFree(data);

GPU will establish direct mapping of

data in CPU memory, no page faults

will be generated

Access counters may eventually

trigger migration of this memory to

the GPU

GPU

CPU

CPU

GPU

51

PERFORMANCE

How long does a page fault take to serve? - We can measure!

Page Fault Cost

Linked list traversal with some large stride to avoid prefetching effects

Page fault cost (us) DtoH HtoD

x86 + PCIe + GP100 20 30

P8 + NVLINK + GP100 20 20

52

G
B
/
s

G
B
/
s

0

5

10

15

20

25

128KB 1MB 8MB 64MB 512MB 4GB

CPU memory

on-demand single on-demand multi

explicit single explicit multi

1

10

100

1000

128KB 1MB 8MB 64MB 512MB 4GB

GPU memory

on-demand prefetch explicit

PERFORMANCE
Page Allocation Throughput

cudaMallocManaged/cudaMalloc + cudaMemset cudaMallocManaged/mmap + fill on the CPU

cudaMalloc is using

preallocated memory

for large sizes

53

PERFORMANCE
Page Migration Throughput (PCIe)

0

2

4

6

8

10

12

14

128KB 1MB 8MB 64MB 512MB 4GB

CPU to GPU
on-demand stream on-demand warp-64k

prefetch memcpy

G
B
/
s

0

2

4

6

8

10

12

14

128KB 1MB 8MB 64MB 512MB 4GB

GPU to CPU

on-demand single on-demand multi

prefetch memcpy

G
B
/
s

54

PERFORMANCE
Page Migration Throughput (2x NVLINK)

0

5

10

15

20

25

30

128KB 1MB 8MB 64MB 512MB

CPU to GPU
on-demand stream on-demand warp-64k

prefetch memcpy

G
B
/
s

0

5

10

15

20

25

128KB 1MB 8MB 64MB 512MB

GPU to CPU

on-demand single on-demand multi

prefetch memcpy

G
B
/
s

55

PERFORMANCE

cudaMallocManaged alignment: 512B on Pascal/Volta, 4KB on Kepler/Maxwell

Too many small allocations will use up many pages

cudaMallocManaged memory is moved at system page granularity

For small allocations more data could be moved than necessary

Solution: use cached allocator or memory pools

Page Granularity Overhead

56

AGENDA

Unified Memory Fundamentals

Under the Hood Details

Performance Analysis and Optimizations

Applications Deep Dive

57

HPC: HPGMG

High-Performance Geometric Multigrid

Proxy AMR and Low Mach Combustion codes

Used in Top500 benchmarking

High memory usage requirements

http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/

Combustion Simulation

http://crd.lbl.gov/departments/computer-science/PAR/research/hpgmg/

58

HPC: HPGMG

Hybrid implementation requires very careful memory management

Frequent data sharing when crossing the CPU-GPU threshold

Taking Advantage of the CPU and the GPU

V-CYCLE

G
P

U

C
P

U

THRESHOLD

F-CYCLE

59

HPGMG: AMR PROXY
Data Locality and Reuse of AMR Levels

Optimization: prefetch the

next AMR level while

running computations on

the current level

We can use a separate

non-blocking CUDA stream

to overlap with the default

stream

https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/

https://devblogs.nvidia.com/parallelforall/beyond-gpu-memory-limits-unified-memory-pascal/

60

AMR PROXY OVERSUBSCRIPTION

0

20

40

60

80

100

120

140

160

180

200

1.4 4.7 8.6 28.9 58.6

x86 K40 P100 (x86 PCI-e) P100 + hints (x86 PCI-e) P100 (P8 NVLINK) P100 + hints (P8 NVLINK)

A
p
p
li
c
a
ti

o
n
 t

h
ro

u
g
h
p
u
t

(M
D

O
F
/s

)

Application working set (GB)

P100 memory size (16GB)

x86 CPU: Intel E5-2630 v3, 2 sockets of 10 cores each with HT on (40 threads)

All 5 levels fit in GPU memory

Only 2 levels fit

Only 1 level fits

61

vDNN: Virtualized DNN for Scalable, Memory-Efficient Neural Network Design

Original version implemented custom heuristics to prefetch and offload data

Unified Memory can automatically migrate memory as needed!

DEEP LEARNING

62

DEEP LEARNING OVERSUBSCRIPTION

GPU: NVIDIA Quadro GP100; cuDNN 5.1, CUDA 9

0

5

10

15

20

25

30

batch 128
12GB

batch 256
23GB

batch 512
45GB

Very Large Batches (VGG-16)
All in Memory Offload Conv Offload All Unified Memory

ti
m

e
 (

m
s)

0

5

10

15

20

25

30

batch 16
10GB

batch 32
19GB

batch 64
36GB

Very Deep Networks (VGG-216)
All in Memory Offload Conv Offload All Unified Memory

ti
m

e
 (

m
s)

GP100 mem size
(16GB)

manual

offload

fails!

Unified Memory

does not require

any changes to the

existing DNN code

63

GRAPH ANALYTICS
BFS Traversal

1

0

1

GPU A GPU B

64

GRAPH ANALYTICS
BFS Traversal

2

2

1

2

0

2

1

2

2

GPU A GPU B

65

GRAPH ANALYTICS
BFS Traversal

3

2

2

1

2

0

2

1

2

2

3

3

GPU A GPU B

66

GRAPH ANALYTICS
Shared vs Duplicated Visibility Vector

GPU A GPU B

shared visibility bitmap

current frontier

duplicated visibility bitmap

67

GRAPH ANALYTICS
Software vs Hardware Atomics

CPU: Intel Core i7-5930K @ 3.50GHz; GPU: NVIDIA Quadro GP100; edgefactor 16, harmonic mean over 64 random sources

S
p
e
e
d
-u

p
 v

s
C
P
U

0

5

10

15

20

25

30

35

40

45

18 19 20 21 22 23 24 25

“Single-GPU” top-down BFS on 2xGP100 with Unified Memory

GPU: shared PCIe

GPU: duplicated PCIe

GPU: shared NVLINK

GPU: duplicated NVLINK

Graph scale (2^N)

68

AGENDA

Unified Memory Fundamentals

Under the Hood Details

Performance Analysis and Optimizations

Applications Deep Dive

69

CONCLUSIONS AND OUTLOOK

Consider using Unified Memory for any new application development

Get your code running on the GPU much sooner!

Enjoy clean code and *virtually* no memory limits

Increase productivity, explore and prototype new algorithms

Use the explicit data management only where you need it

70

