USING GENETIC ALGORITHMS TO OPTIMIZE RECURRENT NEURAL NETWORKS

Joe Schneible
5/10/17
TIME SERIES

Degrees C vs. Day
RECURRENT NEURAL NETWORKS
RECURRENT NEURAL NETWORK (RNN)

Unfold

Output

Input

$t - 1$
t
$t + 1$
LONG SHORT TERM MEMORY (LSTM)

- Each cell is comprised of four elements:
 1. **Input Gate** – Determines how a new value is added to the memory
 2. **Forget Gate** – Determines how a value remains in memory
 3. **Output Gate** – Determines how the value in memory affects the output
 4. **Neuron** – with self-recurrent connection
LSTM VS BASIC RNN

- Both can use standard methods such as back propagation through time
- In basic RNNs, error drops off exponentially
- LSTMs trap error in memory allowing error to be continually fed back until prior cells train well enough to address it
PARAMETER SPACE

- Look Back

- Number of cells in LSTM layer
BATCH TRAINING

- Train in mini-batches on independent windows of the training data
- Each window is trained in parallel
- Parameters gained from each sections are averaged to produce a final parameter set
- Takes advantage of parallelism of GPUs
RECURSIVE PREDICTION

- RNNs predict next time step
- To predict further, one must use resulting output as part of the next input sample
- Error will accumulate as further predictions are made
GENETIC ALGORITHMS
GENETIC ALGORITHMS (GA)

- Heuristic approach to searching a parameter space for a (near) optimal solution
- Modeled on evolution
 - Create a set of solutions called a generation
 - Test all elements of the generation to determine the best solutions
 - Create a new generation through cross-over and mutation of best solutions
 - Repeat
FITNESS FUNCTION

- Determines which candidate solutions are best
- Root Mean Square Error (RMSE) \(\sqrt{\mathbb{E}((\hat{\theta} - \theta)^2)} \)
- Penalty for larger networks
CROSS-OVER

- Combines the genes from multiple parents
- Randomly selects genes from second parent to overwrite those of the first parent as a given rate
MUTATION

- Genes are randomly altered at a small rate
- Enables movement away from local minima
IMPLEMENTATION
IMPLEMENTATION

- Framework
- LSTM Model
- GA Gene Representation
- GA Fitness Function
KERAS

- Python package for neural networks
- Simple and easy usage enables rapid prototyping
- Used Theano backend
MODEL CREATION

- Tested various model architectures
- Used stateless LSTM as opposed to stateful LSTM to take advantage of GPU via mini-batches
- Achieve better results due to efficiency and the ability to perform more training
GENE REPRESENTATION

- Initially started with a decimal representation of parameters where mutations and crossovers would lead to discovering non-global minima.
- Changed to binary representation to help solve this issue.
- Integer parameters are represented as sum of 0-1 binary sequence.
- Length of sequence determined by user-selected theoretical maximum.
GENETIC ALGORITHM FITNESS FUNCTION

- Low training loss did not lead to being able to predict recursively
- Testing RMSE produced better results
RESULTS
HAND TUNED PARAMETERS

RMSE: 0.192
GENETIC ALGORITHM PARAMETERS

RMSE: 0.099
FEMALE BIRTHS

RMSE: 0.16
PERFORMANCE

Training Time

Speed up

3.2x

1x

CPU

GPU
FUTURE WORK

- Multi-GPU Parallelism
 - Each solution in the population can be trained independently
 - Training time is dependent on parameters, so speed up will be sub-linear

- Apply to General Neural Networks
CONCLUSION

- Genetic algorithm chose parameters for our LTSM network
- Produced better results than our hand tuning
- Would be useful for individuals that lack experience selecting parameters
- Requires further parallelization to be feasible for larger network parameter spaces

SPECIAL THANKS

Alex Lu (Junior Software Engineer)
Joe Schneible
Research Scientist
jschneible@technicacorp.com

For more information:
Technica Corporation
22970 Indian Creek Dr.
Suite 500
Dulles, VA 20166
703.662.2000
technicacorp.com

http://technicacorp.com/innovation