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AGENDA

1. Mixed precision training with Volta TensorOps

2. More aggressive training methods

ÅFP16 training

ÅFP16 master weights

3. Nvcaffe float16 internals
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SOME TERMINOLOGY

Training values 

storage

Matrix -Mult

Accumulator Name

FP32 FP32 FP32 training

FP16 FP32 Mixed precision training

FP16 FP16 FP16 training

With mixed or FP16 training, master weights can be FP16 or FP32.

Volta: Mixed precision training with FP32 master weight storage .



VOLTA TRAINING METHOD
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HALF-PRECISION FLOAT (FLOAT16)

FLOAT16 has wide range (240) é but not as wide as FP32!

Normal range:       [ 6 ×10-5 ,  65504 ] 
Sub-normal range: [ 6 ×10-8 ,  6×10Ĭ5] 
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sign exponent
(5 bit)

fraction
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float16
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sign exponent
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TRAINING FLOW

FORWARD PASSWEIGHT UPDATEBACKPROPFORWARD PASS

Wk= Wk - *˂dE/dWk 
dE/dYk-1=dE/dYk *Wk

 dE/dWk=dE/dYk *Yk-1

dE/dY1=dE/dY2 *W2

 dE/dW2=dE/dY2 *Y1

dE/dYk

dE/dYk-1

dE/dX=dE/dY1 *W1

 dE/dW1=dE/dY1 *X

dE/dY1

Loss E

dE/dWk

dE/dW2

dE/dW1

Wk

W2= W2 - *˂dE/dW2 

W1= W1 - *˂dE/dW1 

W2

W1Y1= W1*X

Y2= W2*Y1

Y1

X

Yk= Wk*Yk-1

Yk

Y2

Y1= W1*X

Y2= W2*Y1

Y1

X

Yk= Wk*Yk-1

Yk

Y2

Loss E
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TENSOR CORE 4X4X4 MATRIX-MULTIPLY ACC
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VOLTA TENSOR OPERATION

FP16

storage/input

Full precision

product

Sum with

FP32 accumulator

Convert to

FP32 result

F16

F16

× +

Also supports FP16 accumulator mode for inferencing

F32

F32

more products
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SOME NETWORKS TRAINED OUT OF THE BOX

TensorOptraining matched the results of F32 training

Same hyper-parameters as F32

Same solver and training schedule as F32

Image classification nets (trained on ILSVRC12):

No batch norm: GoogLeNet, VGG-D

With batch norm: Inception v1, Resnet50

All used SGD with momentum solver

GAN

DCGAN-based, 8-layer generator, 7 -layer discriminator

Used Adam solver

10
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GOOGLENET
11



12

INCEPTION V1
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RESNET50
13



14

SOME NETWORKS NEEDED HELP
Networks:

Image classification: CaffeNet

Was not learning out of the box, even with F32 math when storage is F16

Detection nets:

Multibox SSD with VGG-D backbone

ðWas not learning, even with F32 math when storage is F16

Faster R-CNN with VGG-D backbone

ð68.5% mAP, compared to 69.1% mAPwith F32

Recurrent nets:

Seq2seq with attention: lagged behind F32 in perplexity

bigLSTM: diverged after some training

Remedy in all the cases: scale the loss value to òshiftó gradients14
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LOSS SCALING

To shift gradients dE/ dX we will scale up the loss function by constant 
(e.g. by 1000):

layer {

type: " SoftmaxWithLoss ñ

loss_weight : 1000.

}

and  adjust learning rate and weight decay accordingly:

base_lr : 0.01 0.00001         #   0.01 / 1000

weight_decay : 0.0005 0.5      # 0.0005 * 1000
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MULTIBOXSSD: ACTIVATION GRADIENT 
MAGNITUDE HISTOGRAM

16
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MULTIBOXSSD: ACTIVATION GRADIENT 
MAGNITUDE HISTOGRAM

17

Become 0 in F16

Become denormals in F16
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MULTIBOXSSD: ACTIVATION GRADIENT 
MAGNITUDE HISTOGRAM

18

Become 0 in F16

Become denormals in F16

Unused

Overall FP16 range
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MULTIBOX: SCALING LOSS AND GRADIENTS

Loss scaled by 256

Consequently, gradients get scaled 
by 256

By chain rule

Benefits:

Hardly any activation gradients 
become 0 in F16

Most weight gradients become 
normalized values in F16

19

F32 training

Clippy training, loss scaled by 256
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DETECTION TRAINING RESULTS

Multibox-SSD mAP:

F32: 76.9%

F16: 77.1%, loss scaled by 256

Without scaling: doesnõt learn

TensorOp: in flight

matching F32 at 74.1% mAPhalfway through training

Faster-RCNN mAP:

F32: 69.1%

TensorOp: 69.7%, loss scaled by 256, without loss-scaling: 68.5%
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SEQ2SEQ TRANSLATION NETWORK

WMT15 English to French Translation

seq2seq networks with attention:

Based on TensorFlow tutorial

3x1024 LSTM

5x1024 LSTM

Word vocabularies: 

100K English

40K French

SGD solver
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SEQ2SEQ: 3X1024 LSTM
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SEQ2SEQ: 5X1024 LSTM
23
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LANGUAGE MODEL

1 Billion Word Language Benchmark

BigLSTM:

Based on òExploring the Limits of Language Modelingó

https://arxiv.org/abs/1602.02410

2x8192 LSTM, 1024 Projection

Plus a few variants

800K word vocabulary

Adagrad solver

https://arxiv.org/abs/1602.02410
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BIGLSTM: 2X8192 LSTM, 1024 PROJECTION
25
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Guidelines for Training 
with Mixed Precision / TensorOps

26
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TRAINING WITH MIXED PRECISION

ÅA number of cases train òout of the boxó

ïF16 storage and TensorOpsfor fwd/ bwd pass: weights, activations, gradients

ïF32 math for Batch Normalization parameters

ïF32 òmaster-copyó of weights for weights update

ÅWhen out of the box didnõt work:

ïGradient values were too small when converted to F16

ïSolved in all cases with loss scaling
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OBSERVATIONS ON GRADIENT VALUES

FP16 range is large

240 including denorms

Gradient range is biased low vs standard FP16 
range

Max magnitude weõve seen was O(23)

Enables us to òshiftó values without overflowing

Maximum magnitudes:

weight -grad >> activation -grad

For all the nets weõve looked at

28
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PART 2

More aggressive training exploration :

ÅFP16 training

ÅFP16 master weight storage
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ALEXNET: COMPARISON OF RESULTS

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=1024, no augmentation, 1 crop, 1 model 

Mode

Top1

accuracy, %

Top5 

accuracy, %

Fp32 58.62 81.25

Mixed precision training 58.12 80.71

FP16 training 54.89 78.12

FP16 training, loss scale = 1000 57.76 80.76
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ALEXNET: FP16 TRAINING WITH SCALING

With loss scale factor = 1000, FP16 training matches other training 
curves (TensorOpand FP32)
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ALEXNET: FP16 MASTER WEIGHT STORAGE

Can we avoid two weights copies? Can FLOAT16 be used for weight 
update? 

òVanillaó SGD weights update: 

W(t+1) = W(t) - ɚ*ȹW(t)

If we use float16 for ȹW, the product Ʀ* æW(t)  can become too small:

Initially gradients æW(t) are very small. They are multiplied by learning 
rate Ʀ which is  < 1, so ɚ*ȹW(t)can go into subnormal float16 range  

Later gradients becomes larger, but Ʀ becomes smaller, so ɚ*ȹW(t) 

becomes even smaller. 
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ALEXNET: FP16 MASTER WEIGHT STORAGE

There are a number of solutions for this òvanishing updateó problem.

For example to keep two copies of weights: float  W32 for updates, and 
float16 W16for forward -backward pass:

Compute ȹW16(t) using forward-backward pass

Convert gradients to float:      ȹW32(t) =half2float(ȹw16(t)) 

Update weights in float: W32(t+1)=W 32(t) - ɚ*ȹW32(t)

Make float16 copy of weights:  W16(t+1)=float2half(W 32(t+1))

Do forward-backward with W16 ...

So W32 will accumulate small weights updates.
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ALEXNET: FP16 MASTER WEIGHT STORAGE

Consider SGD with momentum:

1. Compute momentum H: H(t+1)= m*H(t) - ɚ*ȹW(t)

2. Update weights with H: W(t+1)= W(t) + H(t+1)

ɚ is small, so  ɚ*ȹW(t) can be very small and it can vanish if we 
compute momentum  in float16. Can we fix this?

Denote D(t)=ȹW(t).Assume for simplicity that Ʀ = const. Then

H(t+1)= m*H(t) -ɚ*D(t)= m*(H(t- 1) -ɚ*D(t- 1)) - ɚ*D(t)=

-ɚ*[D(t) + m*D(t - 1) + m 2*D(t - 2) + mk*D(t - k)+ é]

Moment works as average of gradients! 

ȹW
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ALEXNET: FP16 MASTER WEIGHT STORAGE

Letõs modify the original momentum schema:

1. Compute momentum H: H(t+1)= m*H(t) - ɚ*ȹW(t)

2. Update weights with H: W(t+1)= W(t) + H(t+1)

ȹW
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ALEXNET: FP16 MASTER WEIGHT STORAGE

Letõs modify the original momentum schema:

1. Compute momentum G: G(t+1)= m*G(t) + -ɚ ȹW(t)

2. Update weights with G: W(t+1)= W(t) ïɚ*G(t+1)

Now G will accumulate average of ȹW(t)which donõt vanish! 

Weights update in float16 we use this schema:

Compute ȹw16(t) using forward -backward pass

Compute momentum: G16(t+1) =  m* G 16(t) + ȹw16(t) 

Update in float math:         W=half2float(W 16(t)) - ɚ*half2float(G16(t+1))

Convert result to float16:   W16(t+1)=float2half(W)

Do forward-backward with W16 ... 
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ALEXNET: FP16 MASTER WEIGHT STORAGE

With this fix we can have only one copy of weights in float16:
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ALEXNET: COMPARISON OF RESULTS

Mode

Top1

accuracy, %

Top5 

accuracy, %

Fp32 58.62 81.25

Mixed precision training 58.12 80.71

FP16 training 54.89 78.12

FP16 training, loss scale = 1000 57.76 80.76

FP16 training, loss scale = 1000,

FP16 master weight storage
58.56 80.89

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=1024, no augmentation, 1 crop, 1 model 
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INCEPTION-V3 RESULTS

Scale loss function by 100xé 

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=512, no augmentation, 1 crop, 1 model 

Mode

Top1

accuracy, %

Top5 

accuracy, %

Fp32 73.85 91.44

Mixed precision training 73.6 91.11

FP16 training 71.36 90.84

FP16 training, loss scale = 100 74.13 91.51

FP16 training, loss scale = 100,

FP16 master weight storage
73.52 91.08
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INCEPTION-V3 RESULTS


