
Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius
bginsburg, pauliusm, snikolaev@nvidia.com

05/11/2017

TRAINING WITH
MIXED PRECISION

2

ACKNOWLEDGMENTS

Michael Houston, Hao Wu, Oleksii Kuchaiev, Ahmad
Kiswani, Amir Gholaminejad, Ujval Kapasi, Jonah

Alben, Alex Fit -Florea, Slawomir Kierat

and

cuDNN team

This work is based on NVIDIA branch of caffe
https://github.com/NVIDIA/caffe (caffe -0.16)

https://github.com/NVIDIA/caffe

3

AGENDA

1. Mixed precision training with Volta TensorOps

2. More aggressive training methods

ÅFP16 training

ÅFP16 master weights

3. Nvcaffe float16 internals

4

SOME TERMINOLOGY

Training values

storage

Matrix -Mult

Accumulator Name

FP32 FP32 FP32 training

FP16 FP32 Mixed precision training

FP16 FP16 FP16 training

With mixed or FP16 training, master weights can be FP16 or FP32.

Volta: Mixed precision training with FP32 master weight storage .

VOLTA TRAINING METHOD

5

FWD
Actv

W
ActvF16

F16
F16

BWD-W
Actv Grad

ActvW Grad
F16

F16
F16

F16
BWD-A

Actv Grad

W
Actv Grad

F16

F16

Master-W (F32)

W (F16)

Weight Update

F16

F32
Updated Master-W

F32

6

HALF-PRECISION FLOAT (FLOAT16)

FLOAT16 has wide range (240) é but not as wide as FP32!

Normal range: [6 ×10-5 , 65504]
Sub-normal range: [6 ×10-8 , 6×10Ĭ5]

15 1014 13 12 11 09 8 7 6 5 4 3 2 1

sign exponent
(5 bit)

fraction
(10 bit)

float16

31 2630 29 28 27 1625 24 23 22 21 20 19 18 17

sign exponent
(8 bit)

fraction
(23 bit)

15 1014 13 12 11 09 8 7 6 5 4 3 2 1
float

-24-127 12815-14 0

FP16

FLOAT 32

7

TRAINING FLOW

FORWARD PASSWEIGHT UPDATEBACKPROPFORWARD PASS

Wk= Wk - *˂dE/dWk
dE/dYk-1=dE/dYk *Wk

 dE/dWk=dE/dYk *Yk-1

dE/dY1=dE/dY2 *W2

 dE/dW2=dE/dY2 *Y1

dE/dYk

dE/dYk-1

dE/dX=dE/dY1 *W1

 dE/dW1=dE/dY1 *X

dE/dY1

Loss E

dE/dWk

dE/dW2

dE/dW1

Wk

W2= W2 - *˂dE/dW2

W1= W1 - *˂dE/dW1

W2

W1Y1= W1*X

Y2= W2*Y1

Y1

X

Yk= Wk*Yk-1

Yk

Y2

Y1= W1*X

Y2= W2*Y1

Y1

X

Yk= Wk*Yk-1

Yk

Y2

Loss E

8

TENSOR CORE 4X4X4 MATRIX-MULTIPLY ACC

9

VOLTA TENSOR OPERATION

FP16

storage/input

Full precision

product

Sum with

FP32 accumulator

Convert to

FP32 result

F16

F16

× +

Also supports FP16 accumulator mode for inferencing

F32

F32

more products

10

SOME NETWORKS TRAINED OUT OF THE BOX

TensorOptraining matched the results of F32 training

Same hyper-parameters as F32

Same solver and training schedule as F32

Image classification nets (trained on ILSVRC12):

No batch norm: GoogLeNet, VGG-D

With batch norm: Inception v1, Resnet50

All used SGD with momentum solver

GAN

DCGAN-based, 8-layer generator, 7 -layer discriminator

Used Adam solver

10

11

GOOGLENET
11

12

INCEPTION V1
12

13

RESNET50
13

14

SOME NETWORKS NEEDED HELP
Networks:

Image classification: CaffeNet

Was not learning out of the box, even with F32 math when storage is F16

Detection nets:

Multibox SSD with VGG-D backbone

ðWas not learning, even with F32 math when storage is F16

Faster R-CNN with VGG-D backbone

ð68.5% mAP, compared to 69.1% mAPwith F32

Recurrent nets:

Seq2seq with attention: lagged behind F32 in perplexity

bigLSTM: diverged after some training

Remedy in all the cases: scale the loss value to òshiftó gradients14

15

LOSS SCALING

To shift gradients dE/ dX we will scale up the loss function by constant
(e.g. by 1000):

layer {

type: " SoftmaxWithLoss ñ

loss_weight : 1000.

}

and adjust learning rate and weight decay accordingly:

base_lr : 0.01 0.00001 # 0.01 / 1000

weight_decay : 0.0005 0.5 # 0.0005 * 1000

16

MULTIBOXSSD: ACTIVATION GRADIENT
MAGNITUDE HISTOGRAM

16

17

MULTIBOXSSD: ACTIVATION GRADIENT
MAGNITUDE HISTOGRAM

17

Become 0 in F16

Become denormals in F16

18

MULTIBOXSSD: ACTIVATION GRADIENT
MAGNITUDE HISTOGRAM

18

Become 0 in F16

Become denormals in F16

Unused

Overall FP16 range

19

MULTIBOX: SCALING LOSS AND GRADIENTS

Loss scaled by 256

Consequently, gradients get scaled
by 256

By chain rule

Benefits:

Hardly any activation gradients
become 0 in F16

Most weight gradients become
normalized values in F16

19

F32 training

Clippy training, loss scaled by 256

20

DETECTION TRAINING RESULTS

Multibox-SSD mAP:

F32: 76.9%

F16: 77.1%, loss scaled by 256

Without scaling: doesnõt learn

TensorOp: in flight

matching F32 at 74.1% mAPhalfway through training

Faster-RCNN mAP:

F32: 69.1%

TensorOp: 69.7%, loss scaled by 256, without loss-scaling: 68.5%

21

SEQ2SEQ TRANSLATION NETWORK

WMT15 English to French Translation

seq2seq networks with attention:

Based on TensorFlow tutorial

3x1024 LSTM

5x1024 LSTM

Word vocabularies:

100K English

40K French

SGD solver

22

SEQ2SEQ: 3X1024 LSTM

23

SEQ2SEQ: 5X1024 LSTM
23

24

LANGUAGE MODEL

1 Billion Word Language Benchmark

BigLSTM:

Based on òExploring the Limits of Language Modelingó

https://arxiv.org/abs/1602.02410

2x8192 LSTM, 1024 Projection

Plus a few variants

800K word vocabulary

Adagrad solver

https://arxiv.org/abs/1602.02410

25

BIGLSTM: 2X8192 LSTM, 1024 PROJECTION
25

26

Guidelines for Training
with Mixed Precision / TensorOps

26

27

TRAINING WITH MIXED PRECISION

ÅA number of cases train òout of the boxó

ïF16 storage and TensorOpsfor fwd/ bwd pass: weights, activations, gradients

ïF32 math for Batch Normalization parameters

ïF32 òmaster-copyó of weights for weights update

ÅWhen out of the box didnõt work:

ïGradient values were too small when converted to F16

ïSolved in all cases with loss scaling

28

OBSERVATIONS ON GRADIENT VALUES

FP16 range is large

240 including denorms

Gradient range is biased low vs standard FP16
range

Max magnitude weõve seen was O(23)

Enables us to òshiftó values without overflowing

Maximum magnitudes:

weight -grad >> activation -grad

For all the nets weõve looked at

28

29

PART 2

More aggressive training exploration :

ÅFP16 training

ÅFP16 master weight storage

30

ALEXNET: COMPARISON OF RESULTS

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=1024, no augmentation, 1 crop, 1 model

Mode

Top1

accuracy, %

Top5

accuracy, %

Fp32 58.62 81.25

Mixed precision training 58.12 80.71

FP16 training 54.89 78.12

FP16 training, loss scale = 1000 57.76 80.76

31

ALEXNET: FP16 TRAINING WITH SCALING

With loss scale factor = 1000, FP16 training matches other training
curves (TensorOpand FP32)

32

ALEXNET: FP16 MASTER WEIGHT STORAGE

Can we avoid two weights copies? Can FLOAT16 be used for weight
update?

òVanillaó SGD weights update:

W(t+1) = W(t) - ɚ*ȹW(t)

If we use float16 for ȹW, the product Ʀ* æW(t) can become too small:

Initially gradients æW(t) are very small. They are multiplied by learning
rate Ʀ which is < 1, so ɚ*ȹW(t)can go into subnormal float16 range

Later gradients becomes larger, but Ʀ becomes smaller, so ɚ*ȹW(t)

becomes even smaller.

33

ALEXNET: FP16 MASTER WEIGHT STORAGE

There are a number of solutions for this òvanishing updateó problem.

For example to keep two copies of weights: float W32 for updates, and
float16 W16for forward -backward pass:

Compute ȹW16(t) using forward-backward pass

Convert gradients to float: ȹW32(t) =half2float(ȹw16(t))

Update weights in float: W32(t+1)=W 32(t) - ɚ*ȹW32(t)

Make float16 copy of weights: W16(t+1)=float2half(W 32(t+1))

Do forward-backward with W16 ...

So W32 will accumulate small weights updates.

34

ALEXNET: FP16 MASTER WEIGHT STORAGE

Consider SGD with momentum:

1. Compute momentum H: H(t+1)= m*H(t) - ɚ*ȹW(t)

2. Update weights with H: W(t+1)= W(t) + H(t+1)

ɚ is small, so ɚ*ȹW(t) can be very small and it can vanish if we
compute momentum in float16. Can we fix this?

Denote D(t)=ȹW(t).Assume for simplicity that Ʀ = const. Then

H(t+1)= m*H(t) -ɚ*D(t)= m*(H(t- 1) -ɚ*D(t- 1)) - ɚ*D(t)=

-ɚ*[D(t) + m*D(t - 1) + m 2*D(t - 2) + mk*D(t - k)+ é]

Moment works as average of gradients!

ȹW

35

ALEXNET: FP16 MASTER WEIGHT STORAGE

Letõs modify the original momentum schema:

1. Compute momentum H: H(t+1)= m*H(t) - ɚ*ȹW(t)

2. Update weights with H: W(t+1)= W(t) + H(t+1)

ȹW

36

ALEXNET: FP16 MASTER WEIGHT STORAGE

Letõs modify the original momentum schema:

1. Compute momentum G: G(t+1)= m*G(t) + -ɚ ȹW(t)

2. Update weights with G: W(t+1)= W(t) ïɚ*G(t+1)

Now G will accumulate average of ȹW(t)which donõt vanish!

Weights update in float16 we use this schema:

Compute ȹw16(t) using forward -backward pass

Compute momentum: G16(t+1) = m* G 16(t) + ȹw16(t)

Update in float math: W=half2float(W 16(t)) - ɚ*half2float(G16(t+1))

Convert result to float16: W16(t+1)=float2half(W)

Do forward-backward with W16 ...

37

ALEXNET: FP16 MASTER WEIGHT STORAGE

With this fix we can have only one copy of weights in float16:

38

ALEXNET: COMPARISON OF RESULTS

Mode

Top1

accuracy, %

Top5

accuracy, %

Fp32 58.62 81.25

Mixed precision training 58.12 80.71

FP16 training 54.89 78.12

FP16 training, loss scale = 1000 57.76 80.76

FP16 training, loss scale = 1000,

FP16 master weight storage
58.56 80.89

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=1024, no augmentation, 1 crop, 1 model

39

INCEPTION-V3 RESULTS

Scale loss function by 100xé

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=512, no augmentation, 1 crop, 1 model

Mode

Top1

accuracy, %

Top5

accuracy, %

Fp32 73.85 91.44

Mixed precision training 73.6 91.11

FP16 training 71.36 90.84

FP16 training, loss scale = 100 74.13 91.51

FP16 training, loss scale = 100,

FP16 master weight storage
73.52 91.08

40

INCEPTION-V3 RESULTS

