TRAINING WITH MIXED PRECISION

Boris Ginsburg, Sergei Nikolaev, Paulius Micikevicius bginsburg, pauliusm, snikolaev@nvidia.com 05/11/2017

ACKNOWLEDGMENTS

Michael Houston, Hao Wu, Oleksii Kuchaiev, Ahmad Kiswani, Amir Gholaminejad, Ujval Kapasi, Jonah Alben, Alex Fit-Florea, Slawomir Kierat

and

cuDNN team

This work is based on NVIDIA branch of caffe https://github.com/NVIDIA/caffe (caffe-0.16)

AGENDA

- 1. Mixed precision training with Volta TensorOps
- 2. More aggressive training methods
 - FP16 training
 - FP16 master weights
- 3. Nvcaffe float16 internals

SOME TERMINOLOGY

Training values storage	Matrix-Mult Accumulator	Name	
FP32	FP32	FP32 training	
FP16	FP32	Mixed precision training	
FP16	FP16	FP16 training	

With mixed or FP16 training, master weights can be FP16 or FP32.

Volta: Mixed precision training with FP32 master weight storage.

VOLTA TRAINING METHOD

HALF-PRECISION FLOAT (FLOAT16)

FLOAT16 has wide range (2⁴⁰) ... but not as wide as FP32!

TRAINING FLOW

TENSOR CORE 4X4X4 MATRIX-MULTIPLY ACC

VOLTA TENSOR OPERATION

Also supports FP16 accumulator mode for inferencing

SOME NETWORKS TRAINED OUT OF THE BOX

TensorOp training matched the results of F32 training

Same hyper-parameters as F32

Same solver and training schedule as F32

Image classification nets (trained on ILSVRC12):

No batch norm: GoogLeNet, VGG-D

With batch norm: Inception v1, Resnet50

All used SGD with momentum solver

GAN

DCGAN-based, 8-layer generator, 7-layer discriminator Used Adam solver

GOOGLENET

INCEPTION V1

RESNET50

SOME NETWORKS NEEDED HELP

Networks:

Image classification: CaffeNet

Was not learning out of the box, even with F32 math when storage is F16

Detection nets:

Multibox SSD with VGG-D backbone

- Was not learning, even with F32 math when storage is F16 Faster R-CNN with VGG-D backbone

- 68.5% mAP, compared to 69.1% mAP with F32 Recurrent nets:

Seq2seq with attention: lagged behind F32 in perplexity

bigLSTM: diverged after some training

Remedy in all the cases: scale the loss value to "shift" gradients

LOSS SCALING

To shift gradients dE/dX we will scale up the loss function by constant (e.g. by 1000):

```
layer {
  type: "SoftmaxWithLoss"
  loss_weight: 1000.
}
```

and adjust learning rate and weight decay accordingly:

MULTIBOX SSD: ACTIVATION GRADIENT MAGNITUDE HISTOGRAM

MULTIBOX SSD: ACTIVATION GRADIENT MAGNITUDE HISTOGRAM

MULTIBOX SSD: ACTIVATION GRADIENT MAGNITUDE HISTOGRAM

MULTIBOX: SCALING LOSS AND GRADIENTS

Loss scaled by 256

Consequently, gradients get scaled by 256

By chain rule

Benefits:

Hardly any activation gradients become 0 in F16

Most weight gradients become normalized values in F16

DETECTION TRAINING RESULTS

Multibox-SSD mAP:

- F32: 76.9%
- F16: 77.1%, loss scaled by 256

Without scaling: doesn't learn

TensorOp: in flight

matching F32 at 74.1% mAP halfway through training

Faster-RCNN mAP:

F32: 69.1%

TensorOp: 69.7%, loss scaled by 256, without loss-scaling: 68.5%

SEQ2SEQ TRANSLATION NETWORK

WMT15 English to French Translation

seq2seq networks with attention:

Based on TensorFlow tutorial

3x1024 LSTM

5x1024 LSTM

Word vocabularies:

100K English

40K French

SGD solver

SEQ2SEQ: 3X1024 LSTM

22 📀 nvidia.

SEQ2SEQ: 5X1024 LSTM

LANGUAGE MODEL

1 Billion Word Language Benchmark

BigLSTM:

Based on "Exploring the Limits of Language Modeling"

https://arxiv.org/abs/1602.02410

2x8192 LSTM, 1024 Projection

Plus a few variants

800K word vocabulary

Adagrad solver

BIGLSTM: 2X8192 LSTM, 1024 PROJECTION

Guidelines for Training with Mixed Precision / TensorOps

TRAINING WITH MIXED PRECISION

- A number of cases train "out of the box"
 - F16 storage and TensorOps for fwd/bwd pass: weights, activations, gradients
 - F32 math for Batch Normalization parameters
 - F32 "master-copy" of weights for weights update

- When out of the box didn't work:
 - Gradient values were too small when converted to F16
 - Solved in all cases with loss scaling

OBSERVATIONS ON GRADIENT VALUES

weight gradient magnitudes

FP16 range is large

2⁴⁰ including denorms

Gradient range is biased low vs standard FP16 range

Max magnitude we've seen was O(23)

Enables us to "shift" values without overflowing

Maximum magnitudes:

weight-grad >> activation-grad

For all the nets we've looked at

PART 2

- More aggressive training exploration :
- FP16 training
- FP16 master weight storage

ALEXNET : COMPARISON OF RESULTS

	Top1	Top5
Mode	accuracy, %	accuracy, %
Fp32	58.62	81.25
Mixed precision training	58.12	80.71
FP16 training	54.89	78.12
FP16 training, loss scale = 1000	57.76	80.76

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=1024, no augmentation, 1 crop, 1 mode

ALEXNET : FP16 TRAINING WITH SCALING

With loss scale factor = 1000, FP16 training matches other training curves (TensorOp and FP32)

Can we avoid two weights copies? Can FLOAT16 be used for weight update?

"Vanilla" SGD weights update:

 $W(t+1) = W(t) - \lambda * \Delta W(t)$

If we use float16 for ΔW , the product $\lambda^* \Delta W(t)$ can become too small:

Initially gradients $\Delta W(t)$ are very small. They are multiplied by learning rate λ which is < 1, so $\lambda * \Delta W(t)$ can go into subnormal float16 range

Later gradients becomes larger, but λ becomes smaller, so $\lambda^* \Delta \mathbb{W}(t)$ becomes even smaller.

There are a number of solutions for this "vanishing update" problem.

For example to keep two copies of weights: float W_{32} for updates, and float16 W_{16} for forward-backward pass:

Compute ΔW_{16} (t) using forward-backward pass

Convert gradients to float: $\Delta W_{32}(t) = half2float(\Delta w_{16}(t))$ Update weights in float: $W_{32}(t+1) = W_{32}(t) - \lambda * \Delta W_{32}(t)$ Make float16 copy of weights: $W_{16}(t+1) = float2half(W_{32}(t+1))$

Do forward-backward with W_{16} ...

So W_{32} will accumulate small weights updates.

Consider SGD with momentum:

2. Update weights with H:

1. Compute momentum H:

$$H(t+1) = m H(t) - \lambda \Delta W(t)$$

 $W(t+1) = W(t) + H(t+1)$

 λ is small, so $\lambda * \Delta W(t)$ can be very small and it can vanish if we compute momentum in float16. Can we fix this?

Denote $D(t) = \Delta W(t)$. Assume for simplicity that $\lambda = const$. Then

 $H(t+1) = m^{H}(t) - \lambda^{D}(t) = m^{H}(t-1) - \lambda^{D}(t-1)) - \lambda^{D}(t) =$

$$-\lambda^{*}$$
 [D(t) + m*D(t-1) + m²*D(t-2) + m^k*D(t-k)+...]

Moment works as average of gradients!

Let's modify the original momentum schema:

- 1. Compute momentum H: $H(t+1) = m^*H(t) \lambda^* \Delta W(t)$
- 2. Update weights with H: W(t+1) = W(t) + H(t+1)

Let's modify the original momentum schema:

- 1. Compute momentum G: $G(t+1) = m^*G(t) + -\lambda \Delta W(t)$
- 2. Update weights with G: $W(t+1) = W(t) \lambda G(t+1)$

Now G will accumulate average of $\Delta W(t)$ which don't vanish!

Weights update in float16 we use this schema:

Compute $\triangle W_{16}(t)$ using forward-backward pass

Compute momentum: $G_{16}(t+1) = m^* G_{16}(t) + \Delta w_{16}(t)$

Update in float math: $W=half2float(W_{16}(t)) - \lambda*half2float(G_{16}(t+1))$

Convert result to float16: W₁₆(t+1)=float2half(W)

Do forward-backward with W_{16} ...

36 💿 nvidia.

ALEXNET: FP16 MASTER WEIGHT STORAGE

With this fix we can have only one copy of weights in float16:

ALEXNET : COMPARISON OF RESULTS

Mode	Top1 accuracy, %	Top5 accuracy, %		
Fp32	58.62	81.25		
Mixed precision training	58.12	80.71		
FP16 training	54.89	78.12		
FP16 training, loss scale = 1000	57.76	80.76		
FP16 training, loss scale = 1000, FP16 master weight storage	58.56	80.89		

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=1024, no augmentation, 1 crop, 1 mode

INCEPTION-V3 RESULTS

Scale loss function by 100x...

Mode	Top1 accuracy, %	Top5 accuracy, %		
Fp32	73.85	91.44		
Mixed precision training	73.6	91.11		
FP16 training	71.36	90.84		
FP16 training, loss scale = 100	74.13	91.51		
FP16 training, loss scale = 100, FP16 master weight storage	73.52	91.08		

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=512, no augmentation, 1 crop, 1 model

INCEPTION-V3 RESULTS

RESNET RESULTS

No scale of loss function ...

Mode	Top1 accuracy, %	Top5 accuracy, %		
Fp32	71.75	90.52		
Mixed precision training	71.17	90.10		
FP16 training, loss scale = 1	71.17	90.33		
FP16 training, loss scale = 1, FP16 master weight storage	70.53	90.14		

Nvcaffe-0.16, DGX-1, SGD with momentum, 100 epochs, batch=512, no augmentation, 1 crop, 1 model

RESNET-50 RESULTS

FP16 training is ok

FP16 storage has a small dip at the end (noise?)

OVERALL SUMMARY

- 1. Good results on Volta mixed precision training with a variety of networks
 - Applying a global scaling to the loss input is needed for some networks
 - Wide range of loss scaling values work well
- 2. FP16 training also works for a set of convnets using the loss scaling method still exploratory
- 3. FP16 master weight storage also worked for a set of convnets after refactoring the solver still exploratory
- 4. Overall current recommendation is "mixed precision with FP32 master weight storage" as the most robust training recipe

Part 3

Training with mixed precision in nvcaffe-0.16

NVIDIA/CAFFE-0.16

- Full float16 support
- Mixed precision:
 - Different data types for Forward and Backward
 - Different *math type*
 - Solver_type (for weight update in float16)
- Automatic type conversion
- Very fast!

NVIDIA/CAFFE-0.16

```
name: "AlexNet_fp16"
```

```
default_forward_type: FLOAT16
default_backward_type: FLOAT16
```

```
default_forward_math: FLOAT
default backward math: FLOAT
```

```
layer {
   forward_math: FLOAT16
   backward_math: FLOAT
   ...
```

```
solver_data_type: FLOAT16
```

https://github.com/NVIDIA/caffe/tree/caffe-0.16

47 📀 nvidia.

NVIDIA/CAFFE-0.16 - INTERNALS

```
enum Type {
 DOUBLE = 0,
 FLOAT = 1,
 FLOAT16 = 2,
•••
class Blob { ...
 mutable shared ptr<Tensor> data tensor ;
 mutable shared ptr<Tensor> diff tensor ;
...
class Tensor { ...
 Type type ;
  shared ptr<vector<shared ptr<SyncedMemory>>> synced arrays ;
•••
template<typename Dtype>
class TBlob : public Blob {
```

•••

NVIDIA/CAFFE-0.16 - DATA AND MATH TYPES

NVIDIA/CAFFE-0.16 - SOLVER DATA TYPE

```
solver data type: FLOAT16
template <typename Dtype>
class SGDSolver : public Solver {
...
vector<shared ptr<TBlob<Dtype>>> history , update , temp ;
•••
class Solver {
...
shared ptr<Net> net ;
vector<shared ptr<Net>> test_nets_;
...
```

NVIDIA/CAFFE-0.16 - FUSED KERNELS

```
template<typename Gtype, typename Wtype>
qlobal void SGDRegUpdateAllAndClear(int N, Gtype* g, Wtype* w, Wtype* h,
   float momentum, float local rate, float local decay, bool reg L2, bool clear grads) {
 CUDA KERNEL LOOP(i, N) {
   Wtype reg = reg L2 ? w[i] : Wtype((Wtype(0) < w[i]) - (w[i] < Wtype(0)));
   Wtype gr = Wtype(g[i]) + reg * local decay;
   gr = h[i] = momentum * h[i] + local rate * gr;
   w[i] -= qr;
   g[i] = clear grads ? Gtype(0) : Gtype(gr);
template<> global void SGDRegUpdateAllAndClear< half, float>(int N, half* g, float* w,
float* h, float momentum, float l rate, float l decay, bool reg L2, bool clear grads) {
   half hz; hz.x = 0;
 CUDA KERNEL LOOP(i, N) {
   float reg = reg L2 ? w[i] : (0.F < w[i]) - (w[i] < 0.F);
   float gr = half2float(g[i]) + reg * l decay;
   qr = h[i] = momentum * h[i] + 1 rate * qr;
   w[i] -= qr;
   g[i] = clear grads ? hz : float2half clip(h[i]);
```

NVIDIA/CAFFE-0.16 - MULTIGPU REDUCTION

NCCL_CHECK(ncclAllReduce(send, receive, count, nccl::nccl_type(type), ncclSum, nccl_comm_, comm_stream_->get()));

- 1 call does it all
- FLOAT16 takes 2x less time
- Parallelize!
- After each layer or in the end of back propagation?

NVIDIA/CAFFE-0.16 - BUCKETS

- 6-10 buckets per pass
- Weights Update + Reduce one invocation per bucket
- Runs in a separate CUDA stream and gets synced in the end of back propagation pass

NVIDIA/CAFFE-0.16 - PARALLEL DATA READER

	Batch 0	Batch 1	Batch 2	Batch 3	Batch 4	Batch 5	Batch 6	Batch 7	TR	out queues
r 0 (GPU0)	S0.P0. <mark>q0</mark>						S0.P0. <mark>q3</mark>		\rightarrow \rightarrow	S0.TR <mark>0.q0</mark> S0.TR <mark>0.q1</mark>
		S0.P1. <mark>q1</mark>						S0.P1. <mark>q4</mark>	\rightarrow \rightarrow	S0.TR <mark>0.q2</mark> S0.TR1.q3
Solver			S0.P2.q2						\rightarrow \rightarrow	S0.TR1. <mark>q4</mark> S0.TR1. <mark>q5</mark>
Solver 1 (GPU1)				S1.P0.q0					\rightarrow \rightarrow	S1.TR <mark>0.q0</mark> S1.TR <mark>0.q1</mark>
					S1.P1.q1				\rightarrow \rightarrow	S1.TR <mark>0.q2</mark> S1.TR1.q3
						S1.P2.q2			\rightarrow \rightarrow	S1.TR1.q4 S1.TR1.q5

2 solvers, 3 parser threads per solver (P0, P1, P2), 2 transformer threads per solver (TR0, TR1) - each transformer owns queue set with the number of queues equal to the number of parser threads. 2x3x2=12 queues total. 2x3=6 DB cursors.

NVIDIA/CAFFE-0.16 - ALL TOGETHER NOW

54 💿 nvidia.

