
Robert Maynard

GTC, San Jose, CA

May, 2017

Build Systems: Combining CUDA and 

Modern CMake



Kitware, Inc.
ÅFounded in 1998 by five former GE Research employees

Å136 current employees; 47 with PhDs

ÅPrivately held, profitable from creation

ÅOffices

ïClifton Park, NY

ïCarrboro, NC

ïSanta Fe, NM

ïLyon, France



Business Model: Open Source
Å Open-source Software

ï Normally BSD-licensed

Å Collaborative Research and Development

Å Technology Integration

Å Services, Support, Training, and Consulting



Why CMake? Everyone is using it
KDE 2006 ïFirst Tipping Point!

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

2
0
0
4
-0

1
	

2
0
0
4
-0

5
	

2
0
0
4
-0

9
	

2
0
0
5
-0

1
	

2
0
0
5
-0

5
	

2
0
0
5
-0

9
	

2
0
0
6
-0

1
	

2
0
0
6
-0

5
	

2
0
0
6
-0

9
	

2
0
0
7
-0

1
	

2
0
0
7
-0

5
	

2
0
0
7
-0

9
	

2
0
0
8
-0

1
	

2
0
0
8
-0

5
	

2
0
0
8
-0

9
	

2
0
0
9
-0

1
	

2
0
0
9
-0

5
	

2
0
0
9
-0

9
	

2
0
1
0
-0

1
	

2
0
1
0
-0

5
	

2
0
1
0
-0

9
	

2
0
1
1
-0

1
	

2
0
1
1
-0

5
	

2
0
1
1
-0

9
	

2
0
1
2
-0

1
	

2
0
1
2
-0

5
	

2
0
1
2
-0

9
	

2
0
1
3
-0

1
	

2
0
1
3
-0

5
	

2
0
1
3
-0

9
	

2
0
1
4
-0

1
	

2
0
1
4
-0

5
	

2
0
1
4
-0

9
	

2
0
1
5
-0

1
	

2
0
1
5
-0

5
	

2
0
1
5
-0

9
	

2
0
1
6
-0

1
	

2
0
1
6
-0

5
	

2
0
1
6
-0

9
	

2
0
1
7
-0

1
	

cmake:	(Worldwide)	 autoconf:	(Worldwide)	



ÅIntroduction of CMake Server

ÅQTCreator

ÅVisualStudio 2017

ÅC++ Package Managers

ÅConan.io ïprovides helper scripts

ÅMicrosoft.vckpg

ÅNative CUDA language support

ÅCMake 3.5, 3.6, 3.7, and 3.8 in the last 14 months

Why CMake? Everyone is using it
2016-17 ïSecond Tipping Point!



Classic CMake

Directory

Directory

Executable Library B

Directory

Library A

In reality most projects have a 

very directory centric model

Downard propagation 

ï Include Directories

ïCompile Definitions

ï Find Packages

Consumers have to know:

ï Does the dependency 

generate build tree files

ïDoes the dependency use 

any new external package



Modern CMake
Å Modern CMake uses new(er) APIs

Å Modern CMake is target focused 
ï Include Directories

ï Compile Options

ï Compile Definitions

Å Modern CMake introduces the concept of usage requirements
ï PUBLIC

ï PRIVATE

ï INTERFACE

Å Modern CMake is more declarative



Letôs write CMake code!

8



Letôs write CMake code!

9



Shared Library Mixed Languages

10

PRIVATE: only the given target will use it

INTERFACE: only consuming targets use it

BUILD_INTERFACE: used by consumers from this project or use the build directory

INSTALL_INTERFACE: used by consumers after this target has been installed



Shared Library Mixed Languages

11

PUBLIC: given target and consuming targets will use it



Interface Library

12



Lets Run CMake

13



Separable Compilation

ÅSeparable compilation allows CUDA 

code to call device functions 

implemented in other translation units

ÅCMake 3.8 is capable of separable 

compilation and device linking

ïdevice linking of static libraries occurs 

when they are consumed by a shared 

library or executable

14



Separable Compilation

15


