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Kitware, Inc.
• Founded in 1998 by five former GE Research employees

• 136 current employees; 47 with PhDs

• Privately held, profitable from creation

• Offices

– Clifton Park, NY

– Carrboro, NC

– Santa Fe, NM

– Lyon, France



Business Model: Open Source
• Open-source Software

– Normally BSD-licensed

• Collaborative Research and Development

• Technology Integration

• Services, Support, Training, and Consulting



Why CMake? Everyone is using it
KDE 2006 – First Tipping Point!
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cmake:	(Worldwide)	 autoconf:	(Worldwide)	



• Introduction of CMake Server

• QTCreator

• VisualStudio 2017

• C++ Package Managers

• Conan.io – provides helper scripts

• Microsoft.vckpg

• Native CUDA language support

• CMake 3.5, 3.6, 3.7, and 3.8 in the last 14 months

Why CMake? Everyone is using it
2016-17 – Second Tipping Point!



Classic CMake

Directory

Directory

Executable Library B

Directory

Library A

In reality most projects have a 

very directory centric model

Downard propagation 

– Include Directories

– Compile Definitions

– Find Packages

Consumers have to know:

– Does the dependency 

generate build tree files

– Does the dependency use 

any new external package



Modern CMake
• Modern CMake uses new(er) APIs

• Modern CMake is target focused 
– Include Directories

– Compile Options

– Compile Definitions

• Modern CMake introduces the concept of usage requirements
– PUBLIC

– PRIVATE

– INTERFACE

• Modern CMake is more declarative



Let’s write CMake code!
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Let’s write CMake code!
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Shared Library Mixed Languages
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PRIVATE: only the given target will use it

INTERFACE: only consuming targets use it

BUILD_INTERFACE: used by consumers from this project or use the build directory

INSTALL_INTERFACE: used by consumers after this target has been installed



Shared Library Mixed Languages
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PUBLIC: given target and consuming targets will use it



Interface Library
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Lets Run CMake
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Separable Compilation

• Separable compilation allows CUDA 

code to call device functions 

implemented in other translation units

• CMake 3.8 is capable of separable 

compilation and device linking

– device linking of static libraries occurs 

when they are consumed by a shared 

library or executable
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Separable Compilation
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Separable Compilation
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Separable Compilation
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CMake is able to produce two types of config files

1. You have config files that are part of the build tree of a project. 

These contain build paths that can only be used on the current 

machine

2. You have installed config files that are meant to be machine 

relocatable. Large projects generally ship these as part of the SDK

Export Configuration
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Export Configuration File



Export Configuration

19



Install Export Configuration
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The Proof
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The Proof
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CMake 3.9: MSVC

• CMake 3.9 adds CUDA support to MSVC

• Will require the CUDA MSBuild extensions
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CMake 3.9: OBJECT targets

• CMake 3.9 is expanding OBJECT support

• Will be

– Installable

– Exportable

– Importable

– Usable in Generator Expressions
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CMake 3.9: PTX

• CMake 3.9 will add support for PTX files

• Will be

– Installable

– Exportable

– Importable

– Usable in Generator Expressions
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CMake 3.9: PTX
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Now that you are inspired
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• Explore more CUDA+CMake snippets

– https://gitlab.kitware.com/robertmaynard/cmake_cuda_tests

https://gitlab.kitware.com/robertmaynard/cmake_cuda_tests


Now that you are inspired
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• Read “how to write a CMake buildsystem” 
– https://cmake.org/cmake/help/v3.8/manual/cmake-buildsystem.7.htmlExplore the 

CMake documentation

• Explore the CMake documentation

– https://www.cmake.org/cmake/help/v3.8/

https://cmake.org/cmake/help/v3.8/manual/cmake-buildsystem.7.html
https://www.cmake.org/cmake/help/v3.8/


Thank You!

Robert Maynard

robert.maynard@kitware.com

@robertjmaynard

Please complete the Presenter Evaluation sent to you by email or 

through the GTC Mobile App. Your feedback is important!

Checkout out:

Kitware @ www.kitware.com

CMake @ www.cmake.org

Thanks to NVIDIA for all the technical 

support when developing this work

mailto:robert.maynard@kitware.com
http://www.kitware.com
http://www.cmake.org

