
Robert Maynard

GTC, San Jose, CA

May, 2017

Build Systems: Combining CUDA and 

Modern CMake



Kitware, Inc.
• Founded in 1998 by five former GE Research employees

• 136 current employees; 47 with PhDs

• Privately held, profitable from creation

• Offices

– Clifton Park, NY

– Carrboro, NC

– Santa Fe, NM

– Lyon, France



Business Model: Open Source
• Open-source Software

– Normally BSD-licensed

• Collaborative Research and Development

• Technology Integration

• Services, Support, Training, and Consulting



Why CMake? Everyone is using it
KDE 2006 – First Tipping Point!

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

2
0
0
4
-0
1
	

2
0
0
4
-0
5
	

2
0
0
4
-0
9
	

2
0
0
5
-0
1
	

2
0
0
5
-0
5
	

2
0
0
5
-0
9
	

2
0
0
6
-0
1
	

2
0
0
6
-0
5
	

2
0
0
6
-0
9
	

2
0
0
7
-0
1
	

2
0
0
7
-0
5
	

2
0
0
7
-0
9
	

2
0
0
8
-0
1
	

2
0
0
8
-0
5
	

2
0
0
8
-0
9
	

2
0
0
9
-0
1
	

2
0
0
9
-0
5
	

2
0
0
9
-0
9
	

2
0
1
0
-0
1
	

2
0
1
0
-0
5
	

2
0
1
0
-0
9
	

2
0
1
1
-0
1
	

2
0
1
1
-0
5
	

2
0
1
1
-0
9
	

2
0
1
2
-0
1
	

2
0
1
2
-0
5
	

2
0
1
2
-0
9
	

2
0
1
3
-0
1
	

2
0
1
3
-0
5
	

2
0
1
3
-0
9
	

2
0
1
4
-0
1
	

2
0
1
4
-0
5
	

2
0
1
4
-0
9
	

2
0
1
5
-0
1
	

2
0
1
5
-0
5
	

2
0
1
5
-0
9
	

2
0
1
6
-0
1
	

2
0
1
6
-0
5
	

2
0
1
6
-0
9
	

2
0
1
7
-0
1
	

cmake:	(Worldwide)	 autoconf:	(Worldwide)	



• Introduction of CMake Server

• QTCreator

• VisualStudio 2017

• C++ Package Managers

• Conan.io – provides helper scripts

• Microsoft.vckpg

• Native CUDA language support

• CMake 3.5, 3.6, 3.7, and 3.8 in the last 14 months

Why CMake? Everyone is using it
2016-17 – Second Tipping Point!



Classic CMake

Directory

Directory

Executable Library B

Directory

Library A

In reality most projects have a 

very directory centric model

Downard propagation 

– Include Directories

– Compile Definitions

– Find Packages

Consumers have to know:

– Does the dependency 

generate build tree files

– Does the dependency use 

any new external package



Modern CMake
• Modern CMake uses new(er) APIs

• Modern CMake is target focused 
– Include Directories

– Compile Options

– Compile Definitions

• Modern CMake introduces the concept of usage requirements
– PUBLIC

– PRIVATE

– INTERFACE

• Modern CMake is more declarative



Let’s write CMake code!

8



Let’s write CMake code!

9



Shared Library Mixed Languages

10

PRIVATE: only the given target will use it

INTERFACE: only consuming targets use it

BUILD_INTERFACE: used by consumers from this project or use the build directory

INSTALL_INTERFACE: used by consumers after this target has been installed



Shared Library Mixed Languages

11

PUBLIC: given target and consuming targets will use it



Interface Library

12



Lets Run CMake

13



Separable Compilation

• Separable compilation allows CUDA 

code to call device functions 

implemented in other translation units

• CMake 3.8 is capable of separable 

compilation and device linking

– device linking of static libraries occurs 

when they are consumed by a shared 

library or executable

14



Separable Compilation

15



Separable Compilation

16



Separable Compilation

17



CMake is able to produce two types of config files

1. You have config files that are part of the build tree of a project. 

These contain build paths that can only be used on the current 

machine

2. You have installed config files that are meant to be machine 

relocatable. Large projects generally ship these as part of the SDK

Export Configuration

18

Export Configuration File



Export Configuration

19



Install Export Configuration

20



The Proof

21



The Proof

22



CMake 3.9: MSVC

• CMake 3.9 adds CUDA support to MSVC

• Will require the CUDA MSBuild extensions

23



CMake 3.9: OBJECT targets

• CMake 3.9 is expanding OBJECT support

• Will be

– Installable

– Exportable

– Importable

– Usable in Generator Expressions

24



CMake 3.9: PTX

• CMake 3.9 will add support for PTX files

• Will be

– Installable

– Exportable

– Importable

– Usable in Generator Expressions

25



CMake 3.9: PTX

26



Now that you are inspired

27

• Explore more CUDA+CMake snippets

– https://gitlab.kitware.com/robertmaynard/cmake_cuda_tests

https://gitlab.kitware.com/robertmaynard/cmake_cuda_tests


Now that you are inspired

28

• Read “how to write a CMake buildsystem” 
– https://cmake.org/cmake/help/v3.8/manual/cmake-buildsystem.7.htmlExplore the 

CMake documentation

• Explore the CMake documentation

– https://www.cmake.org/cmake/help/v3.8/

https://cmake.org/cmake/help/v3.8/manual/cmake-buildsystem.7.html
https://www.cmake.org/cmake/help/v3.8/


Thank You!

Robert Maynard

robert.maynard@kitware.com

@robertjmaynard

Please complete the Presenter Evaluation sent to you by email or 

through the GTC Mobile App. Your feedback is important!

Checkout out:

Kitware @ www.kitware.com

CMake @ www.cmake.org

Thanks to NVIDIA for all the technical 

support when developing this work

mailto:robert.maynard@kitware.com
http://www.kitware.com
http://www.cmake.org

