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» Background

o ANOVA for Voxels and SNPs

o VEGAS for Voxels and Genes

o High Speed GPU Monte-Carlo Simulator



What is Neuroimaging Genomics?

o Neuroimaging Genomics is the fusion of brain imaging
and genotyping data.

@ Study the influence of genetic variation on brain
structure and function.



MRI and Sequencing data

MRI data
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Problem Definition

Develop an interactive tool for studying Alzheimer's Disease by coupling a 3D brain
explorer with a genome explorer.

Prior Art Our Goal
120 ROI's = 1,000,000 voxels
20,000 SNP’s 1,000,000 SNP’s



Problem Definition

Brain with 120 Regions of Interest Brain with 1,000,000 voxels



How We Do It — The Ul
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How We Do It — The Ul
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Brain Explorer



How We Do It — The Ul
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ANOVA

ANOVA - Analysis of Variance

Understand the relationship between the gray matter density from the MRI and the
SNP genotype.

"Did the combination happen by chance or not?”



ANOVA

ANOVA - Analysis of Variance

Understand the relationship between the gray matter density from the MRI and the
SNP genotype.

"Did the combination happen by chance or not?”

Computational complexity O(N, * N; x Ns)

N, - number of voxels
N; - number of subjects
Ns - number of SNPS
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VEGAS

VEGAS - VErsatile Gene based Association Study

Understand the relationship between the gray matter density from the MRI and the
collective effect of multiple SNPs within a gene.

"Did the combination happen by chance or not?”
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VEGAS

VEGAS - VErsatile Gene based Association Study

Understand the relationship between the gray matter density from the MRI and the
collective effect of multiple SNPs within a gene.

"Did the combination happen by chance or not?”

Computational complexity O( Ny % Nj« Ns + Ny« Ng = N; )
S————r —

ANOVA component  Monte-Carlo component
N, - number of voxels
Ng - number of genes

N; - number of Monte-Carlo iterations (10, 10%,10% 10°, or 10°)
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VEGAS
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Video of the Interactive Neuroimaging Genomic Browser
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Lessons Learned

How do you build a high speed Monte-Carlo Simulator

for an N dimensional problem on a GPU?
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Lessons Learned

One Dimensional

for i=1to K do
Choose X from N(0,1)

Y = F(X)

Make decision about Y
end
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Lessons Learned

for

One Dimensional

i=1to K do

Choose X from N(0,1)

end

Y = F(X)

Make decision about Y

N-Dimensional

for i=1to K do
Choose n values from N(0,1) giving X"

Y™ = F(X")

Make decision about Y”"

end
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Lessons Learned

First Attempt at N-Dimensional

foreach voxel V in parallel do
foreach gene G in parallel do
for i =1 to K do
Choose n values from N(0,1) giving X"
Y"=F(X")
Make decision about Y”

end
end

end
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Lessons Learned

First Attempt at N-Dimensional

foreach voxel V in parallel do
foreach gene G in parallel do
for i =1 to K do
Choose n values from N(0,1) giving X"
Y"=F(X")
Make decision about Y”

end
end

end

Slow | Fast | Theoretical
Memory Bandwidth (gb/sec) | 20 320
GFLOPS 20 10,000
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Lessons Learned - Solution

N-Dimensional Ah-Ha

In parallel, generate n x K values from N(0,1) giving XK

Yn><K — Fnxn Xn><K

In parallel, decide about ynxK
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Lessons Learned

Slow N-Dimensional Fast N-Dimensional
foreach voxel V in parallel do foreach voxel V sequentially do
foreach gene G in parallel do foreach gene G sequentially do
for i=1to K do In parallel, generate nK values
n values from N(0,1) ynxK = fpnxn o xnxK
Y"=F(X") In parallel, decide about Y<K
Make decision about Y" end
end end
end

end
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Lessons Learned

Slow N-Dimensional Fast N-Dimensional
foreach voxel V' in parallel do foreach voxel V sequentially do
foreach gene G in parallel do foreach gene G sequentially do
fori=1to K do In parallel, generate nK values
n values from N(0,1) ynxK — fpnxn o xnxK
Y"=F(X") In parallel, decide about Y<K
Make decision about Y" end
end end
end

end
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Lessons Learned

Slow N-Dimensional Fast N-Dimensional
foreach voxel V in parallel do foreach voxel V sequentially do
foreach gene G in parallel do foreach gene G sequentially do
for i=1to K do In parallel, generate nK values
n values from N(0,1) ynxK = fpnxn o xnxK
Y"=F(X") In parallel, decide about Y<K
Make decision about Y end
end end
end
end

Slow | Fast | Theoretical

Memory Bandwidth (gb/sec) | 20 155 320
GFLOPS 20 | 2,000 10,000

800X improvement!
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Vegas Results
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Figure 1: Execution times for 1 VEGAS run with K=10,000 Monte-Carlo iterations
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