GPU Data Mining in Neuroimaging Genomics

Bob Zigon

Beckman Coulter Indianapolis, Indiana

May 10, 2017

Outline

- Background
- ANOVA for Voxels and SNPs
- VEGAS for Voxels and Genes
- High Speed GPU Monte-Carlo Simulator

What is Neuroimaging Genomics?

 Neuroimaging Genomics is the fusion of brain imaging and genotyping data.

 Study the influence of genetic variation on brain structure and function.

MRI and Sequencing data

MRI instrument

Genotyping instrument

MRI data

Genotyping data

Problem Definition

Develop an interactive tool for studying Alzheimer's Disease by coupling a 3D brain explorer with a genome explorer.

Prior Art		Our Goal		
120 ROI's	\Rightarrow	1,000,000 voxels		
20,000 SNP's		1,000,000 SNP's		

Problem Definition

Brain with 120 Regions of Interest

Brain with 1,000,000 voxels

Brain Explorer

Brain Explorer

ANOVA

ANOVA - Analysis of Variance

Understand the relationship between the gray matter density from the MRI and the SNP genotype.

"Did the combination happen by chance or not?"

ANOVA

ANOVA - Analysis of Variance

Understand the relationship between the gray matter density from the MRI and the SNP genotype.

"Did the combination happen by chance or not?"

Computational complexity $\mathcal{O}(N_v * N_j * N_s)$

 N_v - number of voxels

 N_j - number of subjects

 N_s - number of SNPS

ANOVA

VEGAS

VEGAS - VErsatile Gene based Association Study

Understand the relationship between the gray matter density from the MRI and the collective effect of multiple SNPs within a gene.

"Did the combination happen by chance or not?"

VEGAS

VEGAS - VErsatile Gene based Association Study

Understand the relationship between the gray matter density from the MRI and the collective effect of multiple SNPs within a gene.

"Did the combination happen by chance or not?"

Computational complexity
$$\mathcal{O}(\underbrace{N_v * N_j * N_s}_{\text{ANOVA component}} + \underbrace{N_v * N_g * N_i}_{\text{Monte-Carlo component}})$$

 N_{v} - number of voxels

 N_g - number of genes

 N_i - number of Monte-Carlo iterations $(10^2, 10^3, 10^4, 10^5, \text{ or } 10^6)$

VEGAS

Video

Video of the Interactive Neuroimaging Genomic Browser

How do you build a high speed Monte-Carlo Simulator for an N dimensional problem on a GPU?

```
One Dimensional
for i = 1 to K do
   Choose X from N(0,1)
```

Y = F(X)Make decision about Y

end

end

One Dimensional

for i = 1 to K do

Choose X from N(0,1) Y = F(X)Make decision about Y

N-Dimensional

First Attempt at N-Dimensional

```
foreach voxel V in parallel do

foreach gene G in parallel do

for i=1 to K do

Choose n values from N(0,1) giving X^n

Y^n = F(X^n)

Make decision about Y^n

end

end
```

First Attempt at N-Dimensional

```
foreach voxel V in parallel do

foreach gene G in parallel do

for i=1 to K do

Choose n values from N(0,1) giving X^n

Y^n = F(X^n)

Make decision about Y^n

end

end
```

	Slow	Fast	I heoretical
Memory Bandwidth (gb/sec)	20		320
GFLOPS	20		10,000

Lessons Learned - Solution

N-Dimensional Ah-Ha

In parallel, generate $n \times K$ values from N(0,1) giving $X^{n \times K}$

$$Y^{n\times K} = F^{n\times n} \times X^{n\times K}$$

In parallel, decide about $Y^{n \times K}$

```
Slow N-Dimensional
                                                           Fast N-Dimensional
foreach voxel V in parallel do
                                               foreach voxel V sequentially do
    foreach gene G in parallel do
                                                   foreach gene G sequentially do
                                                       In parallel, generate nK values
        for i = 1 to K do
                                                       Y^{n \times K} = F^{n \times n} \times X^{n \times K}
           n values from N(0,1)
            Y^n = F(X^n)
                                                       In parallel, decide about Y^{n \times K}
           Make decision about Y^n
                                                   end
        end
                                               end
    end
end
```

```
Slow N-Dimensional
foreach voxel V in parallel do
   foreach gene G in parallel do
       for i = 1 to K do
          n values from N(0,1)
          Y^n = F(X^n)
         Make decision about Y^n
       end
   end
end
```

```
Fast N-Dimensional foreach voxel V sequentially do foreach gene G sequentially do In parallel, generate nK values Y^{n \times K} = F^{n \times n} \times X^{n \times K} In parallel, decide about Y^{n \times K} end end
```

```
Slow N-Dimensional
                                                            Fast N-Dimensional
foreach voxel V in parallel do
                                               foreach voxel V sequentially do
    foreach gene G in parallel do
                                                   foreach gene G sequentially do
                                                       In parallel, generate nK values
        for i = 1 to K do
                                                       Y^{n \times K} = F^{n \times n} \times X^{n \times K}
            n values from N(0,1)
            Y^n = F(X^n)
                                                       In parallel, decide about Y^{n \times K}
            Make decision about Y^n
                                                   end
        end
                                               end
    end
end
```

	Slow	Fast	I heoretical
Memory Bandwidth (gb/sec)	20	155	320
GFLOPS	20	2,000	10,000

800X improvement!

Vegas Results

Figure 1: Execution times for 1 VEGAS run with K=10,000 Monte-Carlo iterations

Acknowledgements

- Professor Li Shen, Dept. of Radiology and Imaging Sciences, IU School of Medicine, NIH R01 EB022574, R01 LM011360, U01 AG024904, and IUPUI ITDP Program.
- Professor Shiaofen Fang, Computer Science Dept. Chair, Indiana University-Purdue University of Indianapolis
- Professor Mohammad Al Hasan, Associate Professor Computer Science, Indiana University-Purdue University of Indianapolis
- Huang Li, PhD Candidate, Computer Science, Indiana University-Purdue University of Indianapolis

Thank you

robert.zigon@beckman.com