The Caffe Framework: DIY Deep Learning

Evan Shelhamer, Jeff Donahue, Jon Long

from the tutorial by
Evan Shelhamer, Jeff Donahue, Jon Long, Yangqing Jia, and Ross Girshick

cafe.berkeleyvision.org

github.com/BVLC/caffe
Why Deep Learning?
End-to-End Learning for Many Tasks

vision

speech

text

control
What is Deep Learning?

Deep Learning is

Stacking **Layers**
and
Learning **End-to-End**
When a user takes a photo, the app should check whether they’re in a national park...

Sure, easy GIS lookup. Gimme a few hours.

...And check whether the photo is of a bird.

I’ll need a research team and five years.

In CS, it can be hard to explain the difference between the easy and the virtually impossible.

xkcd: Tasks

“The Virtually Impossible”
PARK or BIRD

Want to know if your photo is from a U.S. national park? Want to know if it contains a bird? Just drag it into the box to the left, and we'll tell you. We'll use the GPS embedded in your photo (if it's there) to see whether it's from a park, and we'll use our super-cool computer vision skills to try to see whether it's a bird (which is a hard problem, but we do a pretty good job at it).

To try it out, just drag any photo from your desktop into the upload box, or try dragging any of our example images. We'll give you your answers below!

Want to know more about PARK or BIRD, including why the heck we did this? Just click here for more info →

EXAMPLE PHOTOS

PARK?
YES
Ah yes, Everglades is truly beautiful.

BIRD?
YES
Dude, that is such a bird.

Photo credits
All in a day’s work with Caffe

http://code.flickr.net/2014/10/20/introducing-flickr-park-or-bird/
Visual Recognition Tasks: Classification

Classification
- what kind of image?
- which kind(s) of objects?

Challenges
- appearance varies by lighting, pose, context, ...
- clutter
- fine-grained categorization (horse or exact species)
Image Classification: ILSVRC 2010-2015

ImageNet Classification top-5 error (%)

- **ILSVRC'15 ResNet**: 3.57%
- **ILSVRC'14 GoogleNet**: 6.7%
- **ILSVRC'14 VGG**: 7.3%
- **ILSVRC'13**: 11.7%
- **ILSVRC'12 AlexNet**: 16.4%
- **ILSVRC'11**: 25.8%
- **ILSVRC'10**: 28.2%

Diagram shows a comparison of top-5 error rates for various years and models in ILSVRC competitions.
Visual Recognition Tasks: Detection

Detection
- what objects are there?
- where are the objects?

Challenges
- localization
- multiple instances
- small objects
Detection: PASCAL VOC

R-CNN:
regions + convnets
state-of-the-art, in Caffe
Visual Recognition Tasks: Segmentation

Semantic Segmentation
- what kind of thing is each pixel part of?
- what kind of stuff is each pixel?

Challenges
- tension between recognition and localization
- amount of computation
Segmentation: PASCAL VOC

Deep learning with Caffe

end-to-end networks lead to 25 points absolute or 50% relative improvement and >100x speedup in 1 year!

(papers published for +1 or +2 points)

Leaderboard

<table>
<thead>
<tr>
<th>Model</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSRA.BoxSup [7]</td>
<td>75.2</td>
</tr>
<tr>
<td>DeepLab.MSc-CRF-LargeFOV-COCO-CrossJoint [7]</td>
<td>73.9</td>
</tr>
<tr>
<td>Adelaide_Context.CNN.CRF.VOC [7]</td>
<td>72.9</td>
</tr>
<tr>
<td>POSTECH_EDeconvNet.CRF.VOC [7]</td>
<td>72.5</td>
</tr>
<tr>
<td>Oxford.TV.GRNN.VOC [7]</td>
<td>72.0</td>
</tr>
<tr>
<td>DeepLab-MSc-CRF-LargeFOV [7]</td>
<td>71.6</td>
</tr>
<tr>
<td>MSRA.BoxSup [7]</td>
<td>71.0</td>
</tr>
<tr>
<td>DeepLab-CRF-COCO-Strong [7]</td>
<td>70.4</td>
</tr>
<tr>
<td>DeepLab-CRF-LargeFOV [7]</td>
<td>70.3</td>
</tr>
<tr>
<td>TTI.zoomout_v2 [7]</td>
<td>69.6</td>
</tr>
<tr>
<td>DeepLab-CRF-MSc [7]</td>
<td>67.1</td>
</tr>
<tr>
<td>DeepLab-CRF [7]</td>
<td>66.4</td>
</tr>
<tr>
<td>CRF_RNN [7]</td>
<td>65.2</td>
</tr>
<tr>
<td>TTI.zoomout_16 [7]</td>
<td>64.4</td>
</tr>
<tr>
<td>Hypercolumn [7]</td>
<td>62.6</td>
</tr>
<tr>
<td>FCN-Bs [7]</td>
<td>62.2</td>
</tr>
<tr>
<td>MSRA.CFM [7]</td>
<td>61.8</td>
</tr>
<tr>
<td>TTI.zoomout [7]</td>
<td>58.4</td>
</tr>
<tr>
<td>SDS [7]</td>
<td>51.6</td>
</tr>
<tr>
<td>NUS.UDS [1]</td>
<td>50.0</td>
</tr>
<tr>
<td>TTIC-divmbest-rerank [7]</td>
<td>48.1</td>
</tr>
<tr>
<td>BONN.O2PCPMC.FGT.SEGM [7]</td>
<td>47.8</td>
</tr>
<tr>
<td>BONN.O2PCPMC.FGT.SEGM [7]</td>
<td>47.5</td>
</tr>
<tr>
<td>BONNGC.O2PCPMC.CSI [7]</td>
<td>46.8</td>
</tr>
<tr>
<td>BONN.CMRR.O2PCPMC.CPM.CUIN [7]</td>
<td>46.7</td>
</tr>
</tbody>
</table>
Deep History

1958 Rosenblatt proposed perceptrons
1980 Neocognitron (Fukushima, 1980)
1982 Hopfield network, SOM (Kohonen, 1982), Neural PCA (Oja, 1982)
1985 Boltzmann machines (Ackley et al., 1985)
1986 Multilayer perceptrons and backpropagation (Rumelhart et al., 1986)
1988 RBF networks (Broomhead & Lowe, 1988)
1989 Autoencoders (Baldi & Hornik, 1989), Convolutional network (LeCun, 1989)
1992 Sigmoid belief network (Neal, 1992)
1993 Sparse coding (Field, 1993)

2000s Sparse, Probabilistic, and Layer-wise models (Hinton, Bengio, Ng)
2012 DL popularized in vision by contest victory (Krizhevsky et al. 2012)

Is deep learning 4, 20, or 50 years old? What’s changed?
Why Now?

1. Data
 ImageNet et al.: millions of labeled (crowdsourced) images

2. Compute
 GPUs: terabytes/s memory bandwidth, teraflops compute

3. Technique
 new optimization know-how,
 new variants on old architectures,
 new tools for rapid experiments and deployments
Why Now? Deep Learning Frameworks

frontend: a language for any network, any task

- network internal representation

backend: dispatch compute for learning and inference

tools: visualization, profiling, debugging, etc.

layer library: fast implementations of common functions and gradients

we like to brew our networks with **Caffe**
What is Caffe?

Open framework, models, and worked examples for deep learning

- 2 years old
- 1,000+ citations, 150+ contributors, 9,000+ stars
- 5,000+ forks, >1 pull request / day average
- focus has been vision, but branching out: sequences, reinforcement learning, speech + text
What is Caffe?

Open framework, models, and worked examples for deep learning

- Pure C++ / CUDA library for deep learning
- Command line, Python, MATLAB interfaces
- Fast, well-tested code
- Tools, reference models, demos, and recipes
- Seamless switch between CPU and GPU
Caffe is a Community

January 19, 2016 – February 19, 2016

Overview

<table>
<thead>
<tr>
<th>Merged Pull Requests</th>
<th>Proposed Pull Requests</th>
<th>Closed Issues</th>
<th>New Issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>23</td>
<td>52</td>
<td>38</td>
</tr>
</tbody>
</table>

Excluding merges, **20 authors** have pushed **19 commits** to master and **53 commits** to all branches. On master, **44 files** have changed and there have been **2,268 additions** and **162 deletions**.
Caffe offers the
- model definitions
- optimization settings
- pre-trained weights
so you can start right away

The BVLC models are licensed for unrestricted use

The community shares models in our Model Zoo
Open Model Collection

The Caffe Model Zoo open collection of deep models to share innovation

- MSRA ResNet ILSVRC15 winner in the zoo
- VGG ILSVRC14 + Devil models in the zoo
- MIT Places scene recognition model in the zoo
- Network-in-Network / CCCP model in the zoo

helps disseminate and reproduce research
bundled tools for loading and publishing models

Share Your Models! with your citation + license of course
Brewing by the Numbers...

Speed with Krizhevsky's 2012 model:

- 2 ms/image on K40 GPU
- <1 ms inference with Caffe + cuDNN v4 on Titan X
- 72 million images/day with batched IO
- 8-core CPU: ~20 ms/image Intel optimization in progress

9k lines of C++ code (20k with tests)
Sharing a Sip of Brewed Models

demo.caffe.berkeleyvision.org
demo code open-source and bundled
Scene Recognition [http://places.csail.mit.edu/]

Predictions:

- **Type of environment:** outdoor
- **Semantic categories:** skyscraper:0.69, tower:0.16, office_building:0.11,
- **SUN scene attributes:** man-made, vertical components, natural light, open area, nohorizon, glossy, metal, wire, clouds, far-away horizon
Visual Style Recognition

Other Styles:
- Vintage
- Long Exposure
- Noir
- Pastel
- Macro
- … and so on.
Object Detection

R-CNNs: Region-based Convolutional Networks

Fast R-CNN
- convolve once
- project + detect

Faster R-CNN
- end-to-end proposals and detection
- image inference in 200 ms
- Region Proposal Net + Fast R-CNN

papers + code online

Ross Girshick, Shaoqing Ren, Kaiming He, Jian Sun
Pixelwise Prediction

Fully convolutional networks for pixel prediction in particular semantic segmentation
- end-to-end learning
- efficient inference and learning
 100 ms per-image prediction
- multi-modal, multi-task

Applications
- semantic segmentation
- denoising
- depth estimation
- optical flow

CVPR’15 paper and code + models
Visual Sequence Tasks

Activity Recognition
Input: Sequence of Frames
Output: Label

Image Description
Input: Image
Output: Sentence
A large building with a clock on the front of it

Video Description
Input: Video
Output: Sentence
A man juiced the orange

Jeff Donahue et al. CVPR’15
Recurrent Networks for Sequences

Recurrent Nets and Long Short Term Memories (LSTM) are sequential models
- video
- language
- dynamics
learned by backpropagation through time

LRCN: Long-term Recurrent Convolutional Network
- activity recognition (sequence-in)
- image captioning (sequence-out)
- video captioning (sequence-to-sequence)

LRCN:
recurrent + convolutional
for visual sequences

CVPR’15 paper and code + models
Deep Visuomotor Control

example experiments

feature visualization

Sergey Levine* & Chelsea Finn*, Trevor Darrell, and Pieter Abbeel
Deep Visuomotor Control Architecture

- multimodal (images & robot configuration)
- runs at 20 Hz - mixed GPU & CPU for real-time control

[paper] + [code] for guided policy search
Embedded Caffe

Caffe runs on embedded CUDA hardware and mobile devices

- same model weights, same framework interface
- out-of-the-box on CUDA platforms
- in-progress OpenCL port thanks Fabian Tschopp! + AMD, Intel, and the community
- community Android port thanks sh1r0!

CUDA Jetson TX1, TK1

OpenCL branch

Android lib, demo
Caffeinated Companies

... startups, big companies, more ...
Caffe at Facebook

- in production for **vision at scale**: uploaded photos run through Caffe
- **Automatic Alt Text** for the blind
- **On This Day** for surfacing memories
- objectionable content detection
- contributing back to the community: inference tuning, tools, code review

On This Day highlight content

Automatic Alt Text recognize photo content for accessibility

[example credit Facebook]
Caffe at Pinterest

- in production for vision at scale: uploaded photos run through Caffe

- deep learning for visual search: retrieval over billions of images in <250 ms

- ~4 million requests/day

- built on an open platform of Caffe, FLANN, Thrift, ...

[example credit Andrew Zhai, Pinterest]
Caffe at Adobe

- training networks for research in vision and graphics
- custom inference in products, including Photoshop

Photoshop Type Similarity
catalogue typefaces automatically
Caffe at Yahoo! Japan

- personalize news and content, and de-duplicate suggestions
- curate news and restaurant photos for recommendation
- arrange user photo albums

News Image Recommendation
select and crop images for news
Deep Learning, as it is executed...

What does the Caffe framework handle?

Compositional Models
- Decompose the problem and code!

End-to-End Learning
- Configure and solve!

Many Architectures and Tasks
- Define, experiment, and extend!
Net

A network is a set of layers and their connections:

- **name**: "dummy-net"

- **layer** { name: "data" ...}

- **layer** { name: "conv" ...}

- **layer** { name: "pool" ...}

 ... more layers ...

- **layer** { name: "loss" ...}

- Caffe creates and checks the net from the definition

- Data and derivatives flow through the net
Forward / Backward The Essential Net Computations

Forward:

\[f_W(x) \]

Inference

\[\nabla f_W(x) \]

Backward:

Learning

“espresso” + loss

Caffe models are complete machine learning systems for inference and learning.

The computation follows from the model definition: define the model and run.
Layer Protocol

Forward: make output given input.

Backward: make gradient of output
- w.r.t. bottom
- w.r.t. parameters (if needed)

Setup: run once for initialization.

Reshape: set dimensions.

Compositional Modeling
The Net’s forward and backward passes are composed of the layers’ steps.
import caffe
import numpy as np

class EuclideanLoss(caffe.Layer):
 def setup(self, bottom, top):
 # check input pair
 if len(bottom) != 2:
 raise Exception("Need two inputs to compute distance.")

 def reshape(self, bottom, top):
 # check input dimensions match
 if bottom[0].count != bottom[1].count:
 raise Exception("Inputs must have the same dimension.")
 # difference is shape of inputs
 self.diff = np.zeros_like(bottom[0].data, dtype=np.float32)
 # loss output is scalar
 top[0].reshape(1)

 def forward(self, bottom, top):
 self.diff[...] = bottom[0].data - bottom[1].data
 top[0].data[...] = np.sum(self.diff**2) / bottom[0].num / 2.

 def backward(self, self, top, propagate_down, bottom):
 for i in range(2):
 if not propagate_down[i]:
 continue
 if i == 0:
 sign = 1
 else:
 sign = -1
 bottom[i].diff[...] = sign * self.diff / bottom[i].num

Layer Protocol

== Class Interface

Define a class in C++ or Python to extend Layer

Include your new layer type in a network and keep brewing

layer {
 type: "Python"
 python_param {
 module: "layers"
 layer: "EuclideanLoss"
 }
}
AlexNet: a layered model composed of convolution, pooling, and further operations followed by a holistic representation. A landmark classifier on ILSVRC12 [AlexNet] + data + gpu + non-saturating non-linearity + regularization
Convolutional Nets: 2014

GoogLeNet ILSVRC14 Winner: ~6.6% Top-5 error

- composition of multi-scale dimension-reduced “Inception” modules
- no FC layers and only 5 million parameters

+ depth
+ dimensionality reduction
+ auxiliary classifiers

[Szegedy15]
Convolutional Nets: 2014

<table>
<thead>
<tr>
<th>A</th>
<th>A-LRN</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>11 weight layers</td>
<td>11 weight layers</td>
<td>13 weight layers</td>
<td>16 weight layers</td>
<td>16 weight layers</td>
<td>19 weight layers</td>
</tr>
<tr>
<td>input (224 x 224 RGB image)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv-3-64</td>
<td>conv-3-64 LRN</td>
<td>conv-3-64</td>
<td>conv-3-64</td>
<td>conv-3-64</td>
<td>conv-3-64</td>
</tr>
<tr>
<td>conv-3-128</td>
<td>conv-3-128</td>
<td>conv-3-128</td>
<td>conv-3-128</td>
<td>conv-3-128</td>
<td>conv-3-128</td>
</tr>
<tr>
<td>maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv-3-256</td>
<td>conv-3-256</td>
<td>conv-3-256</td>
<td>conv-3-256</td>
<td>conv-3-256</td>
<td>conv-3-256</td>
</tr>
<tr>
<td>conv-3-512</td>
<td>conv-3-512</td>
<td>conv-3-512</td>
<td>conv-3-512</td>
<td>conv-3-512</td>
<td>conv-3-512</td>
</tr>
<tr>
<td>maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC-4096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FC-4096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>conv-3-512</td>
<td>conv-3-512</td>
<td>conv-3-512</td>
<td>conv-3-512</td>
<td>conv-3-512</td>
<td>conv-3-512</td>
</tr>
<tr>
<td>maxpool</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VGG16 ILSVRC14 Runner-up: ~7.3% Top-5 error</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- simple architecture, *good for transfer learning*
- 155 million params and more expensive to compute
 + depth
 + stacking small filters
 + fine-tuning deeper and deeper

[Simonyan15]
Convolutional Nets: 2015

Learn **residual** mapping w.r.t. **identity**

\[F(x) \]

\[H(x) = F(x) + x \]

- very deep 100+ layer nets
- skip connections across layers
- normalization to help propagation

ILSVRC15 and COCO15 Winner: **MSRA ResNet**
- classification
- detection
- segmentation

Kaiming He, et al.
Deep Residual Learning for Image Recognition

\([He15]\)
Model Format

- Protobuf serialization
- Auto-generates code
- Developed by Google
- Defines Net / Layer / Solver schemas in `caffe.proto`

```protobuf
message ConvolutionParameter {
  // The number of outputs for the layer
  optional uint32 num_output = 1;
  // whether to have bias terms
  optional bool bias_term = 2 [default = true];
}

layer {
  name: "conv1"
  type: "Convolution"
  bottom: "data"
  top: "conv1"
  convolution_param {
    num_output: 20
    kernel_size: 5
    stride: 1
    weight_filler {
      type: "xavier"
    }
  }
}
```
from caffe import layers as L
from caffe import params as P

data = L.data(batch_size=64, backend=P.data.LMDB, source='examples/mnist/mnist_train_lmdb')
conv1 = L.convolution(data, kernel_size=5, num_output=20)
pool1 = L.pooling(conv1, kernel_size=2, stride=2, pool=P.pooling.MAX)
conv2 = L.convolution(pool1, kernel_size=5, num_output=50)
pool2 = L.pooling(conv2, kernel_size=2, stride=2, pool=P.pooling.MAX)
ip1 = L.relu(L.inner_product(pool2, num_output=500))
prob = L.softmax(L.inner_product(ip1, num_output=10))
Model Zoo Format

gist_id: 80667189b218ad570e82

This is a model from the paper:

Fully Convolutional Networks for Semantic Segmentation
Jonathan Long, Evan Shelhamer, Trevor Darrell
arXiv:1411.4038

Gists on github hold model definition, license, url for weights, and hash of Caffe commit that guarantees compatibility
Solving: Training a Net

Optimization like model definition is configuration

```
train_net: "lenet_train.prototxt"
type: SGD
base_lr: 0.01
momentum: 0.9
weight_decay: 0.0005
max_iter: 10000
snapshot_prefix: "lenet_snapshot"
```

All you need to run things on the GPU

```
> caffe train -solver lenet_solver.prototxt -gpu 0
```

SGD + momentum SGD · Nesterov’s Accelerated Gradient Nesterov

Adaptive Solvers Adam · RMSProp · AdaDelta · AdaGrad
Recipe for Brewing

- Convert the data to Caffe-format
 python layer, lmdb, leveldb, hdf5 / .mat, list of images, etc.

- Define the Net
- Configure the Solver
- `caffe train -solver solver.prototxt -gpu 0`
 or interface with Python or MATLAB

- Examples are your friends
 `caffe/examples/*.ipynb`
 `caffe/models/*`
 `caffe/examples/mnist,cifar10,imagenet`
Transfer Learning and Fine-Tuning

weights are a way to cache computation and transfer learning
reference models + the model zoo help exchange weights and ideas
Take a Pre-trained Model and Fine-tune to New Datasets...

Lots of Data

-imagenet-

Your Data

Ethereal	HDR

Style Recognition

Dogs vs. Cats
top 10 in 10 minutes

© kaggle.com
Take a Pre-trained Model and Fine-tune to New Tasks...

Lots of Data

Your Task

→

Detection

Segmentation
Take a Pre-trained Model and Fine-tune to New Modalities...

Lots of Data

IMAGENET

Your Modality

→

Depth/Range

Remote Sensing

Medical Imaging
When to Fine-tune?

Almost always
- Robust initialization
- Needs less data
- Faster learning

State-of-the-art results in
- classification
- detection
- segmentation
- more

high accuracy with few examples through fine-tuning
How to Fine-Tune? (1/2)

Simply change a few lines in the model definition

```
layer {  
  name: "data"  
  type: "Data"  
  data_param {  
    source: "ilsvrc12_train_lmdb"  
    mean_file: "../../data/ilsvrc12"  
  }  
}

layer {  
  name: "fc8"  
  type: "InnerProduct"  
  inner_product_param {  
    num_output: 1000  
  }  
}
```

Input:

A different source

```
layer {  
  name: "data"  
  type: "Data"  
  data_param {  
    source: "style_train_lmdb"  
    mean_file: "../../data/ilsvrc12"  
  }  
}

layer {  
  name: "fc8-style"  
  type: "InnerProduct"  
  inner_product_param {  
    num_output: 20  
  }  
}
```

new name = new params

Last Layer:

A different classifier
How to Fine-Tune? (2/2)

> caffe train -solver models/finetune_flickr_style/solver.prototxt
 -weights bvlc_reference_caffenet.caffemodel

Step-by-step in pycaffe:

```python
pretrained_net = caffe.Net(
    "net.prototxt", "net.caffemodel")
solver = caffe.SGDSolver("solver.prototxt")
solver.net.copy_from(pretrained_net)
solver.solve()
```
Framework Future

1.0 is coming stability, documentation, packaging

Performance Tuning for GPU (cuDNN v5) and CPU (nnpack)

In-progress Ports for OpenCL and Windows

Halide interface for prototyping and experimenting

Widening the Circle continued and closer collaborative development
Next Steps

Today you’ve seen the progress made with DIY deep learning and the democratization of models

Next Up:

- caffe.berkeleyvision.org
- github.com/BVLC/caffe

Check out Caffe on github

Run Caffe through Docker and NVIDIA Docker for GPU

Come to our hands-on lab at GTC!
Join the caffe-users mailing list
Come to the Embedded Vision Summit for a full-day tutorial on convolutional networks and Caffe:

- In-depth, practical training on convnets for vision applications
- Hands-on labs using Caffe to create, train, and evaluate convnets

The Embedded Vision Summit includes:

- 3-day, multi-track program on computer vision product development techniques and markets
- Demos, talks and workshops on the latest processors, tools, APIs, and more

For details and to register: www.EmbeddedVisionSummit.com
Thanks to the whole Caffe Crew

Yangqing Jia, Evan Shelhamer, Jeff Donahue, Jonathan Long, Sergey Karayev, Ross Girshick, Sergio Guadarrama, Ronghang Hu, Trevor Darrell

and our open source contributors!
Acknowledgements

Thank you to the Berkeley Vision and Learning Center and its Sponsors

Thank you to NVIDIA for GPUs, cuDNN collaboration, and hands-on cloud instances

Thank you to A9 and AWS for a research grant for Caffe dev and reproducible research

Thank you to our 150+ open source contributors and vibrant community!

END