High-Performance GPU Clustering: GPUDirect RDMA over 40GbE iWARP

Tom Reu
Consulting Applications Engineer
Chelsio Communications
tomreu@chelsio.com
Chelsio Corporate Snapshot

Leader in High Speed Converged Ethernet Adapters

- Leading 10/40GbE adapter solution provider for servers and storage systems
 - ~800K ports shipped
- High performance protocol engine
 - 80MPPS
 - 1.5μsec
 - ~5M+ IOPs
- Feature rich solution
 - Media streaming hardware/software
 - WAN Optimization, Security, etc.
- Company Facts
 - Founded in 2000
 - 150 strong staff
- R&D Offices
 - USA – Sunnyvale
 - India – Bangalore
 - China - Shanghai
RDMA Overview

- Direct memory-to-memory transfer
- All protocol processing handling by the NIC
 - Must be in hardware
- Protection handled by the NIC
 - User space access requires both local and remote enforcement
- Asynchronous communication model
 - Reduced host involvement
- Performance
 - Latency - polling
 - Throughput
- Efficiency
 - Zero copy
 - Kernel bypass (user space I/O)
 - CPU bypass

Performance and efficiency in return for new communication paradigm
iWARP

What is it?

• Provides the ability to do Remote Direct Memory Access over Ethernet using TCP/IP
• Uses Well-Known IB Verbs
• Inboxed in OFED since 2008
• Runs on top of TCP/IP
 • Chelsio implements iWARP/TCP/IP stack in silicon
 • Cut-through send
 • Cut-through receive
• Benefits
 • Engineered to use “typical” Ethernet
 • No need for technologies like DCB or QCN
 • Natively Routable
 • Multi-path support at Layer 3 (and Layer 2)
 • It runs on TCP/IP
 • Mature and Proven
 • Goes where TCP/IP goes (everywhere)
iWARP

- iWARP updates and enhancements are done by the IETF STORM (Storage Maintenance) working group
- RFCs
 - RFC 5041 Direct Data Placement over Reliable Transports
 - RFC 5044 Marker PDU Aligned Framing for TCP Specification
 - RFC 6580 IANA Registries for the RDDP Protocols
 - RFC 6581 Enhanced RDMA Connection Establishment
 - RFC 7306 Remote Direct Memory Access (RDMA) Protocol Extensions
- Support from several vendors, Chelsio, Intel, QLogic
iWARP

Increasing Interest in iWARP as of late

- Some Use Cases
 - High Performance Computing
 - SMB Direct
 - GPUDirect RDMA
 - NFS over RDMA
 - FreeBSD iWARP
 - Hadoop RDMA
 - Lustre RDMA
 - NVMe over RDMA fabrics
iWARP

Advantages over Other RDMA Transports

• It’s Ethernet
 • Well Understood and Administered
 • Uses TCP/IP
 • Mature and Proven
 • Supports rack, cluster, datacenter, LAN/MAN/WAN and wireless
 • Compatible with SSL/TLS
 • Do not need to use any bolt-on technologies like
 • DCB
 • QCN
• Does not require a totally new network infrastructure
 • Reduces TCO and OpEx
iWARP vs RoCE

<table>
<thead>
<tr>
<th>iWARP</th>
<th>RoCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Native TCP/IP over Ethernet, no different from NFS or HTTP</td>
<td>Difficult to install and configure - “needs a team of experts” - Plug-and-Debug</td>
</tr>
<tr>
<td>Works with ANY Ethernet switches</td>
<td>Requires DCB - expensive equipment upgrade</td>
</tr>
<tr>
<td>Works with ALL Ethernet equipment</td>
<td>Poor interoperability - may not work with switches from different vendors</td>
</tr>
<tr>
<td>No need for special QoS or configuration - TRUE Plug-and-Play</td>
<td>Fixed QoS configuration - DCB must be setup identically across all switches</td>
</tr>
<tr>
<td>No need for special configuration, preserves network robustness</td>
<td>Easy to break - switch configuration can cause performance collapse</td>
</tr>
<tr>
<td>TCP/IP allows reach to Cloud scale</td>
<td>Does not scale - requires PFC, limited to single subnet</td>
</tr>
<tr>
<td>No distance limitations. Ideal for remote communication and HA</td>
<td>Short distance - PFC range is limited to few hundred meters maximum</td>
</tr>
<tr>
<td>WAN routable, uses any IP infrastructure</td>
<td>RoCEv1 not routable. RoCE v2 requires lossless IP infrastructure and restricts router configuration</td>
</tr>
<tr>
<td>Standard for whole stack has been stable for a decade</td>
<td>ROCEv2 incompatible with v1. More fixes to missing reliability and scalability layers required and expected</td>
</tr>
<tr>
<td>Transparent and open IETF standards process</td>
<td>Incomplete specification and opaque process</td>
</tr>
</tbody>
</table>

Efficient Performance™
Chelsio’s T5

Single ASIC does it all

• High Performance Purpose Built Protocol Processor
• Runs multiple protocols
 • TCP with Stateless Offload and Full Offload
 • UDP with Stateless Offload
 • iWARP
 • FCoE with Offload
 • iSCSI with Offload
• All of these protocols run on T5 with a SINGLE FIRMWARE IMAGE
 • No need to reinitialize the card for different uses
 • Future proof e.g. support for NVMf yet preserves today’s investment in iSCSI
T5 ASIC Architecture

High Performance Purpose Built Protocol Processor

- Single processor data-flow pipelined architecture
- Up to 1M connections
- Concurrent Multi-Protocol Operation

- Single connection at 40Gb. Low Latency.
Leading Unified Wire™ Architecture

Converged Network Architecture with all-in-one Adapter and Software

- **Storage**
 - NVMe/Fabrics
 - SMB Direct
 - iSCSI and FCoE with T10-DIX
 - iSER and NFS over RDMA
 - pNFS (NFS 4.1) and Lustre
 - NAS Offload
 - Diskless boot
 - Replication and failover

- **Virtualization & Cloud**
 - Hypervisor offload
 - SR-IOV with embedded VEB
 - VEPA, VN-TAGs
 - VXLAN/NVGRE
 - NFV and SDN
 - OpenStack storage
 - Hadoop RDMA

- **HPC**
 - iWARP RDMA over Ethernet
 - GPUDirect RDMA
 - Lustre RDMA
 - pNFS (NFS 4.1)
 - OpenMPI
 - MVAPICH

- **Networking**
 - 4x10GbE/2x40GbE NIC
 - Full Protocol Offload
 - Data Center Bridging
 - Hardware firewall
 - Wire Analytics
 - DPDK/netmap

- **Media Streaming**
 - Traffic Management
 - Video segmentation Offload
 - Large stream capacity

Single Qualification — Single SKU
Concurrent Multi-Protocol Operation
GPUDirect RDMA

- Introduced by NVIDIA with the Kepler Class GPUs. Available today on Tesla and Quadro GPUs as well.
- Enables Multiple GPUs, 3rd party network adapters, SSDs and other devices to read and write CUDA host and device memory.
- Avoids unnecessary system memory copies and associated CPU overhead by copying data directly to and from pinned GPU memory.
- One hardware limitation
 - The GPU and the Network device MUST share the same upstream PCIe root complex.
- Available with Infiniband, RoCE, and now iWARP.
GPUDirect RDMA

T5 iWARP RDMA over Ethernet certified with NVIDIA GPUDirect

- Read/write GPU memory directly from network adapter
 - Peer-to-peer PCIe communication
 - Bypass host CPU
 - Bypass host memory
- Zero copy
- Ultra low latency
- Very high performance
- Scalable GPU pooling
 - Any Ethernet networks
Modules required for GPUDirect RMDA with iWARP

- Chelsio Modules
 - cxgb4 - Chelsio adapter driver
 - iw_cxgb4 - Chelsio iWARP driver
 - rdma_ucm - RDMA User Space Connection Manager
- NVIDIA Modules
 - nvidia - NVIDIA driver
 - nvidia_uvm - NVIDIA Unified Memory
 - nv_peer_mem - NVIDIA Peer Memory
Case Studies
HOOMD-blue

- General Purpose Particle simulation toolkit
- Stands for: **Highly Optimized** **Object-oriented** **Many-particle Dynamics - Blue Edition**
- Running on GPUDirect RDMA - **WITH NO CHANGES TO THE CODE - AT ALL!**
- More Info: www.codeblue.umich.edu/hoomd-blue
HOOMD-blue

Test Configuration

- 4 Nodes
- Intel E5-1660 v2 @ 3.7 Ghz
- 64 GB RAM
- Chelsio T580-CR 40Gb Adapter
- NVIDIA Tesla K80 (2 GPUs per card)
- RHEL 6.5
- OpenMPI 1.10.0
- OFED 3.18
- CUDA Toolkit 6.5
- HOOMD-blue v1.3.1-9
- Chelsio-GDR-1.0.0.0
- Command Line:

```
$MPI_HOME/bin/mpirun --allow-run-as-root -mca btl_openib.want_cuda_gdr 1 -np X -hostfile /root/hosts -mca btl_openib,sm,self -mca btl_openib_if_include cxgb4:0:1 --mca btl_openib_cuda_rdma_limit 65538 -mca btl_openib_receive_queues P,131072,64 -x CUDA_VISIBILE_DEVICES=0,1 /root/hoomd-install/bin/hoomd ./bmark.py --mode=gpu|cpu
```
HOOMD-blue

Lennard-Jones Liquid 64K Particles Benchmark

• Classic benchmark for general purpose MD simulations.
• Representative of the performance HOOMD-blue achieves for straight pair potential simulations
HOOMD-blue

Lennard-Jones Liquid 64K Particles Benchmark Results

Average Timesteps per Second

Test 1
- 26 CPU Cores
- 488 timesteps
- 2 GPUs
- 1,230 timesteps
- 2 GPUs

Test 2
- 88 CPU Cores
- 503 timesteps
- 4 GPUs
- 1,403 timesteps
- 4 GPUs

Test 3
- 214 CPU Cores
- 1,089 timesteps
- 8 GPUs
- 1,771 timesteps
- 8 GPUs

CPU
GPU w/o GPUDirect RDMA
GPU w/ GPUDirect RDMA

Longer is Better

Chelsio Communications Accelerate
HOOMD-blue

Lennard-Jones Liquid 64K Particles Benchmark Results

Hours to complete 10e6 steps

Test 1
- 6 hours with 2 GPUs
- 2.2 hours with 2 GPUs

Test 2
- 5.5 hours with 4 GPUs
- 1.7 hours with 4 GPUs

Test 3
- 13 hours with 40 CPUs
- 2.5 hours with 8 GPUs
- 1.5 hours with 8 GPUs

CPU
- 108 hours with 2 CPUs

GPU w/o GPUDirect RDMA
- 32 hours with 8 CPUs

GPU w/ GPUDirect RDMA
- Shorter is Better

Chelsio Communications Accelerate
• runs a system of particles with an oscillatory pair potential that forms a icosahedral quasicrystal
HOOMD-blue

Quasicrystal results

Average Timesteps per Second

- **Test 1**
 - 2 CPU Cores: 11
 - 2 GPUs: 308
 - 407 (2 GPUs)

- **Test 2**
 - 8 CPU Cores: 43
 - 4 GPUs: 656
 - 728 (4 GPUs)

- **Test 3**
 - 40 CPU Cores: 31
 - 8 GPUs: 915
 - 1,158 (8 GPUs)

Legend
- **CPU**
- **GPU w/o GPUDirect RDMA**
- **GPU w/ GPUDirect RDMA**

Longer is Better
HOOMD-blue

Quasicrystal results

Hours to complete 10e6 steps

Test 1
- CPU: 264 hours
- GPU w/o GPUDirect RDMA: 2 hours
- GPU w/ GPUDirect RDMA: 9 hours

Test 2
- CPU: 63 hours
- GPU w/o GPUDirect RDMA: 4 hours
- GPU w/ GPUDirect RDMA: 4 hours

Test 3
- CPU: 86 hours
- GPU w/o GPUDirect RDMA: 3 hours
- GPU w/ GPUDirect RDMA: 2.4 hours

Shorter is Better
Caffe
Deep Learning Framework

• Open source Deep Learning software from Berkeley Vision and Learning Center
• Updated to include CUDA support to utilize GPUs
• Standard version does NOT include MPI support
• MPI implementations
 • mpi-caffe
 • Used to train a large network across a cluster of machines
 • model-parallel distributed approach.
 • caffe-parallel
 • Faster framework for deep learning.
 • data-parallel via MPI, splits the training data across nodes
Summary

GPUDirect RDMA over 40GbE iWARP

- iWARP provides RDMA Capabilities to a Ethernet network
- iWARP uses tried and true TCP/IP as its underlying transport mechanism
- Using iWARP does not require a whole new network infrastructure and the management requirements that come along with it
- iWARP can be used with existing software running on GPUDirect RDMA which NO CHANGES required to the code
- Applications that use GPUDirect RDMA will see huge performance improvements
- Chelsio provides 10/40Gb iWARP TODAY with 25/50/100 Gb on the horizon
More information

GPUDirect RDMA over 40GbE iWARP

- Visit our website, www.chelsio.com, for more White Papers, Benchmarks, etc.
- Webinar: https://www.brighttalk.com/webcast/13671/189427
- Beta code for GPUDirect RDMA is available TODAY from our download site at service.chelsio.com
- Sales questions - sales@chelsio.com
- Support questions - support@chelsio.com
Questions?
Thank You