Persistent RNNs
(stashing recurrent weights on-chip)

Gregory Diamos

Baidu SVAIL

April 7, 2016
Think hard AI.

Goal

- Develop hard AI technologies that impact 100 million users.
Hypothesis: deep learning scales with data and compute.

- Can we strong scale deep learning to the limits of technology?
30x speedup at a mini-batch size of 4

Why is reducing the mini-batch size important?

- **Train bigger and deeper models.**
- **Strong scale to more GPUs.**
- **Improve efficiency of deployed models.**
Training Deep RNNs
Deep speech

Near human level speech recognition in Mandarin and English
- Trained on over 10,000 hours (about 1 year) of speech data.
- 20 ExaFLOPs of work to train (7 days on 16 GPUs at 40% of peak).
Data parallelism:

- The training data is grouped into mini-batches.
- Each GPU trains a copy of the model on a slice of the mini-batch.
- GPUs synchronize their models after a fixed number of steps.
So how should you choose the mini-batch size?

- Hardware efficiency will set a lower bound.
- Optimization efficiency will set an upper bound.

Shrinking the mini-batch per GPU enables the use of more GPUs.
Determining the batch size

The upper bound can be found empirically.

In general a hyperparameter search is needed, but a useful heuristic is:

- $momentum = 1.0 - \frac{\text{miniBatchSize}}{\text{windowSize}}$
- $learningRate = \text{stepSize} \times (1.0 - momentum) \times \text{miniBatchSize}$
Persistent RNN Details
RNNs built on GEMM calls reload the weights (U) each timestep.

However, the weights are constant, and this is wasteful.
Off-chip memory is much slower and less efficient than registers.

- GPUs have more on-chip memory in registers than anywhere else.

Cache RNN weights in registers and reuse them over timesteps.
Choosing the tile sizes

- Block rows avoid additional inter-CTA synchronizations.
- Each SM loads the activations into shared memory.
- Threads are interleaved to avoid shared memory bank conflicts.
- Vector loads and broadcasts amplify shared memory bandwidth.
An inter-CTA barrier is implemented with a counting semaphore.

- Uses atomic, membar, and cache modified load/store operations.
- Completes in about 500ns on a TitanX GPU.

Disclaimer: global barriers violate the CUDA 7.5 model.

- CUDA does not guarantee forward progress of multiple CTAs.
- Our system implements cooperative threading for correctness.
Software pipelining is used to hide latency.

- Thread local math (430ns).
- Intra-SM reduction (320ns).
- Global loads (315ns).
- Global barrier (500ns).

These are grouped into 4 pipeline stages, kept full with a minibatch of 4.
Strong Scaling
Scaling to 128 GPUs

Scaling results for end-to-end model training.

- 8 GPUs per node, 7GB/s infiniband between nodes.
- The algorithmic mini-batch size is fixed at 512.

A smaller mini-batch per GPU enables the use of up to 128 GPUs.
Exploring deep residual RNNs

Using a mini-batch per GPU of 4 provides a 16x reduction in memory.
- Models with more parameters can now fit into GPU memory.

Results suggest that residual skip connections networks apply to RNNs.
Future GPUs will enable bigger and faster RNN layers.

- bigger GPUs (more threads, more registers)
- low latency atomics between GPUs (NvLink)
- lower precision (fp16)
So far, deep learning for speech recognition has scaled with compute.

Persistent kernels provide a new tool for accelerating RNN training.

- Let’s continue building faster computers, software, and algorithms.

What other hard AI problems will scale with deep learning and compute?
Questions?

Contact Me:

Gregory Diamos - gregdiamos@baidu.com

Baidu USA is hiring!

http://usa.baidu.com/careers/