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Think hard Al.

Goal

@ Develop hard Al technologies that impact 100 million users.
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Deep Learning at SVAIL

100 GFLOP/s 6 TFLOP/s 800 TFLOP/s 100 PFLOP/s
1 laptop 1GPU 128 GPUs 16K GPUs

/ ’ human level

eep learning
state of the art

many previous methods

recognition accuracy

data and compute

Hypothesis: deep learning scales with data and compute.

@ Can we strong scale deep learning to the limits of technology?
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Persistent RNNs

30x speedup at a mini-batch size of 4
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Mini-Batch Size

Why is reducing the mini-batch size important?

o Train bigger and deeper models.
e Strong scale to more GPUs.
o Improve efficiency of deployed models.
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Training Deep RNNs
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Near human level speech recognition in Mandarin and English
@ Trained on over 10,000 hours (about 1 year) of speech data.
@ 20 ExaFLOPs of work to train (7 days on 16 GPUs at 40% of peak).



Data parallel training
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Data parallelism:
@ The training data is grouped into mini-batches.
@ Each GPU trains a copy of the model on a slice of the mini-batch.

@ GPUs synchronize their models after a fixed number of steps.
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So how should you choose the mini-batch size?

64 per GPU 1024

inefficient hardware inefficient optimization

wall-clock time to convergence

mini-batch size

@ Hardware efficiency will set a lower bound.
@ Optimization efficiency will set an upper bound.

Shrinking the mini-batch per GPU enables the use of more GPUs.

Gregory Diamos Persistent RNNs



Determining the batch size

The upper bound can be found empirically.

32_train
64_train
256_train
1024_train
2048_train
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CTC cost
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Epoch number
In general a hyperparameter search is needed, but a useful heuristic is:

1 _ miniBatchSize
e momentum = 1.0 — #5222

o learningRate = stepSize * (1.0 — momentum) % miniBatchSize



Persistent RNN Details




RNN primer
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@ RNNs built on GEMM calls reload the weights (U) each timestep.
o However, the weights are constant, and this is wasteful.
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GPU
5.5 MB

380 GB/s
300 ns

6 144 TFLOP/s

Core

230 KB 128 GB’ 55 | 256 GFLOP/s

896 B

2 GFLOP/s

Off-chip memory is much slower and less efficient than registers.

@ GPUs have more on-chip memory in registers than anywhere else.

Cache RNN weights in registers and reuse them over timesteps.
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Choosing the tile sizes
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Recurrent Weight Matrix

@ Block rows avoid additional inter-CTA synchronizations.
@ Each SM loads the activations into shared memory.
@ Threads are interleaved to avoid shared memory bank conflicts.

@ Vector loads and broadcasts amplify shared memory bandwidth.
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Global barriers on GPUs _
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An inter-CTA barrier is implemented with a counting semaphore.
@ Uses atomic, membar, and cache modified load/store operations.
@ Completes in about 500ns on a TitanX GPU.

Disclaimer: global barriers violate the CUDA 7.5 model.
o CUDA does not guarantee forward progress of multiple CTAs.

@ Our system implements cooperative threading for correctness.
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Software pipelining

timestepy timestep, timestep,.;
mini-batch 0 | load | math load || math toad || math
mini-batch 1 toad || math ier| | 10ad || math ||reduce] barrier] | toad || math
mini-batch 2 toad || math toad || math toad || math
mini-batch 3 load || math i load math i load || math I I
| |
io it iz [ i is is iz lna ans danz dann dan daner lanez

Software pipelining is used to hide latency.
o Thread local math (430ns).
@ Intra-SM reduction (320ns).
o Global loads (315ns).
@ Global barrier (500ns).
These are grouped into 4 pipeline stages, kept full with a minibatch of 4.
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Strong Scaling




Scaling to 128 GPUs

Scaling results for end-to-end model training.
@ 8 GPUs per node, 7GB/s infiniband between nodes.
@ The algorithmic mini-batch size is fixed at 512.

_Deep Speech Scaling With 1152 Unit Layers
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A smaller mini-batch per GPU enables the use of up to 128 GPUs.
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Exploring deep residual RNN_

Using a mini-batch per GPU of 4 provides a 16x reduction in memory.

@ Models with more parameters can now fit into GPU memory.

Dgep Residual Network Error Rate Reduction With Depth

— Deep Residual RNN
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Recurrent Layer Count

Results suggest that residual skip connections networks apply to RNNs.
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Pascal and future
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Future GPUs will enable bigger and faster RNN layers.
@ bigger GPUs (more threads, more registers)
o low latency atomics between GPUs (NvLink)
o lower precision (fp16)
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Concli B

So far, deep learning for speech recognition has scaled with compute.

100 GFLOP/s 6 TFLOP/s 800 TFLOP/s 100 PFLOP/s
1 laptop 1GPU 128 GPUs 16K GPUs

human level

/ ep learning
state of the art

many prévious methods

recognition accuracy

data and compute

Persistent kernels provide a new tool for accelerating RNN training.
@ Let's continue building faster computers, software, and algorithms.

What other hard Al problems will scale with deep learning and compute?
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Questions?

Contact Me:

Gregory Diamos - gregdiamos@baidu.com

Baidu USA is hiring!

http://usa.baidu.com/careers/
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