Local Statistical Filtering via Domain Dissection for Medical Imaging

GTC 2016 – San Jose, CA, USA

Alexandros-Stavros Iliopoulos1 Dimitris Floros2 Nikos Pitsianis2,1 Xiaobai Sun1
Fang-Fang Yin3 Lei Ren3

1Department of Computer Science, Duke University
2Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki
3Department of Radiation Oncology, Duke University School of Medicine

April 6, 2016
Spatially variant signal-noise analysis: motivation
needs & challenges
LA-SAS contribution

Locally adaptive signal-noise analysis
formulation
example filters
analytic advance & technical challenges

LA-SAS: design & development
design principle: multi-layer configuration
domain dissection: local adaptivity & global concurrency
CUDA LA-SAS
experimental results

Recap & discussion

References
1 Spatially variant signal-noise analysis: motivation
 needs & challenges
 LA-SAS contribution

2 Locally adaptive signal-noise analysis
 formulation
 example filters
 analytic advance & technical challenges

3 LA-SAS: design & development
 design principle: multi-layer configuration
 domain dissection: local adaptivity & global concurrency
 CUDA LA-SAS
 experimental results

4 Recap & discussion

5 References
Spatially variant signal-noise analysis: needs & challenges

- Noise is prevalent in medical images
 - multiple sources (acquisition, processing, ...)
 - multiple types (Gaussian, Poisson, scatter, ...)
- Noise study: characterization & suppression
 - critical to high-fidelity analysis
 (noise propagation in processing pipeline
 e.g. gradient calculation)
 - need effective tools for systematic investigation
 - speed important for on-board imaging applications
- Challenging conditions
 - valuable low-contrast content (especially in CT)
 - acquisition constraints (resolution, imaging dose)
 - motion: nonlinear intensity-deformation relationship
 * spatial variance
 (w.r.t. material, density, acquisition set-up)

pelvis cone-beam OBI
(125 kV, coronal projection)
with spatially variant scattering
Spatially variant signal-noise analysis: contribution

- **LA-SAS**
 - locally adaptive signal-noise analysis system
 - revealing local noise statistics and signal structure
 - filtering in adaptation to local structures
 - enabling effective noise suppression

- **LA-SAS** design and development
 - basic operations
 - versatile filter composition
 - CUDA LA-SAS (efficiency)

range histograms: global region (top) vs. nested sub-regions (bottom)
1 Spatially variant signal-noise analysis: motivation
 needs & challenges
 LA-SAS contribution

2 Locally adaptive signal-noise analysis
 formulation
 example filters
 analytic advance & technical challenges

3 LA-SAS: design & development
 design principle: multi-layer configuration
 domain dissection: local adaptivity & global concurrency
 CUDA LA-SAS
 experimental results

4 Recap & discussion

5 References
Locally adaptive signal-noise analysis: problem description

- Dual task of an analysis/filtering mechanism \((F)\)

\[
l(x) = \hat{l}(x) + \eta(x), \quad x \in \Omega \subset \mathbb{R}^D
\]

- detect/reconstruct unknown signal, \(\hat{l}\)
- estimate/suppress unknown noise, \(\eta\)

- Adaptation to local variation

\[
\hat{l}(x) := \sum_{x' \in \mathcal{N}(x)} F(x', l(x'); p_{\mathcal{N}(x)})
\]

- based on local statistics, \(p_{\mathcal{N}(x)}\), over spatial neighborhood, \(\mathcal{N}(x)\)
 (mean, median, deviation, range distribution, etc)
- preserving signal structure
 (smooth subregions, discontinuities at region boundaries, etc)
Locally adaptive filtering example: median

\[\hat{I}(x) = p_{\mathcal{N}(x)} = \text{median}\{ I(x) \} \]

- basic denoising & processing sub-module

(regional dynamic range)

median filter output (5 × 5)

residual image

Chung et al. NSS/MIC, 2010
Locally adaptive filtering example: entropy

\[p_N(x) = \Pr_N \{ l(x) \} \]
\[H(x) = - \sum p_N(x) \log(p_N(x)) \]

- multimodal registration
- basic step for other processing modules (e.g. segmentation, histogram equalization)

Zhang et al. *ICBBE*, 2008
Pluim et al. *IEEE TMI* (22), 2003
Locally adaptive filtering example: histogram equalization (HE)

$$p_{\mathcal{N}(x)} = \text{hist}[r, l(\mathcal{N}(x))]$$

where hist: local histogram

- r: quantized ranges

- local contrast enhancement

- local + global distribution information

Zhu et al. CVIA (73), 1999

(global dynamic range) global HE local HE (adapthisteq) to be replaced with overlapping LHE
Locally adaptive filtering example: bilateral filter (BF)

\[p_{\mathcal{N}}(x) = \sigma_r(x) \]

\[k_s(x, x') = e^{-\frac{||x-x'||^2}{\sigma_s^2}} \]

\[k_r(I(x), I(x')) = e^{-\frac{||I(x)-I(x')||^2}{\sigma_r^2(x)}} \]

(space- and range-kernels)

- boundary-preserving denoising
- local adaptation to boundary “jumps”

Tomasi & Manduchi. ICCV, 1998
Locally adaptive filtering example: bilateral filter (BF)

\[p_{\mathcal{N}}(x) = \sigma_r(x) \]
\[k_s(x, x') = e^{-\frac{||x-x'||^2}{\sigma_s^2}} \]
\[k_r(I(x), I(x')) = e^{-\frac{||I(x)-I(x')||^2}{\sigma_r^2(x)}} \]

(space- and range-kernels)

- boundary-preserving denoising
- local adaptation to boundary “jumps”

\(\sigma_s = 1.5, \sigma_r = 0.157 \) (residual image)

Tomasi & Manduchi. ICCV, 1998
Locally adaptive filtering: analytic advance & technical challenges

- Reveal and preserve spatially variant signal structure
 (same as in conventional methods with spatial adaptivity)
- Permit spatially inhomogeneous noise behavior
 (often observed in medical imaging)
- Depart from filtering algorithms with predetermined, global parameters
 (including histograms and some bilateral filters)
Locally adaptive filtering: analytic advance & technical challenges

- Reveal and preserve spatially variant signal structure
 (same as in conventional methods with spatial adaptivity)

- Permit spatially inhomogeneous noise behavior
 (often observed in medical imaging)

- Depart from filtering algorithms with predetermined, global parameters
 (including histograms and some bilateral filters)

- Challenge traditional parallel primitives in multiple aspects
 (algorithmic complexity, concurrency, numerical behavior)
Locally adaptive filtering: analytic advance & technical challenges

- Reveal and preserve spatially variant signal structure
 (same as in conventional methods with spatial adaptivity)
- Permit spatially inhomogeneous noise behavior
 (often observed in medical imaging)
- Depart from filtering algorithms with predetermined, global parameters
 (including histograms and some bilateral filters)
- Challenge traditional parallel primitives in multiple aspects
 (algorithmic complexity, concurrency, numerical behavior)
- Fully parallel but highly redundant
- Work-efficient may become
 - highly sequential
 - highly divergent
 - numerically unstable
- Compromises:
 increase redundancy to stabilize numerics and expose parallelism
1 Spatially variant signal-noise analysis: motivation
 needs & challenges
 LA-SAS contribution

2 Locally adaptive signal-noise analysis
 formulation
 example filters
 analytic advance & technical challenges

3 LA-SAS: design & development
 design principle: multi-layer configuration
 domain dissection: local adaptivity & global concurrency
 CUDA LA-SAS
 experimental results

4 Recap & discussion

5 References
LA-SAS design principles

- Multi-layer configuration between
 - filtering at the application level (top)
 - parallel computing at the architecture level (bottom)
 (not one-to-all cross-bar configuration)

- Abstraction of basic LA-SAS operations & versatile filter composition

- Enabling systematic investigation & efficient implementation

- Domain dissection
- Locality adaptation
 - Local range per tile
- Redundancy reduction
 - Single-pass precomputation
 - Common sub-regions
LA-SAS MATLAB Syntax and Pyramid Data Structure

```
locStat = localStat = local

\[
\begin{align*}
\text{Mean} & \quad (\text{Image, b}) \\
\text{Std} & \quad \text{Tile}(\text{Image, b, t}) \\
\text{Min} & \quad \text{Tile1x1}(\text{Image, b}) \\
\text{Max} & \\
\text{Median} & \\
\text{Mad} & \\
\text{Hist} & \\
\text{Entropy} &
\end{align*}
\]
```

```
localStat
- image
- integral
- integral2
- minLocal
- maxLocal
- integralHistogram
- min
- max
- tile{1}
  - size
  - integral
  - integral2
  - minLocal
  - maxLocal
  - integralHistogram
  - min
  - max
- tile{2}
  - size
  - etc
```
LA-SAS Dependency Graph and Arithmetic Complexity

Integral : 2
Integral $x^2 : 3$
Mean : 4
$\sum x^2 : 3$
StD : 3
Median : 14w
MAD : 14w
Min Max : 3
Integral Histogram : 2b
Local Histogram : 3b
Entropy : 2b

operations per image pixel
w : number of pixels in a local neighborhood
b : number of histogram bins
LA-SAS primitives: local grid for local histograms in constant time

\[(D + 1)\text{-dimensional grid embedding, with local dynamic range bins}\]

Histograms in constant time from integral histogram representation (Poostchi et al, ACCVW, 2012)
Domain dissection: local adaptivity & global concurrency
Domain dissection: local adaptivity & global concurrency
Domain dissection: local adaptivity & global concurrency

Sliding window operation
LA-SAS Implementation

- Utilize MATLAB built-ins
- Data in gpuArray
- CUDA kernels for the rest
- Compute all you can in each pass
- Cache computed results in cell array of struct to reuse (memoization)
- User responsible for caching and data motion to/from GPU

- Three CUDA kernels:
 - localStats
 - histPrefixSum
 - localMinMax

- Tiles mapped on grid
- Thread blocks working locally
- Common neighborhood shared
Catphan Phantom

Catphan 504 phantom by Varian Medical Systems

CTP515 low contrast module with supra-slice and subslice contrast targets

CTP528 High resolution module with 21 line pair per cm gauge and point source
Local statistics exploration

Catphan cone-beam 125kV X-ray ($\theta = 21^\circ$)

global and ROI-specific 32-bin Shannon distributions
Local statistics exploration

Catphan cone-beam projection example histogram windows (7 × 7)

example 32-bin local histograms

Iliopoulos, Floros, Pitsianis, Sun, Yin, Ren (Duke|AUTH)
Locally Adaptive Signal-Noise Analysis
GTC-2016 Apr 6, 2016 22 / 33
Local statistics exploration

7 × 7 mean

15 × 15 mean
Local statistics exploration

7 × 7 standard deviation

15 × 15 standard deviation
Local statistics exploration

7 × 7 median

15 × 15 median
Local statistics exploration

7 × 7 median absolute deviation (MAD)
15 × 15 median absolute deviation (MAD)
Local statistics exploration

7 × 7 dynamic range (log-scale) 15 × 15 dynamic range (log-scale)
Local statistics exploration

7 × 7 entropy via locally adaptive 32-bin histograms

15 × 15 entropy via locally adaptive 32-bin histograms
Local statistics exploration

7 × 7 entropy via uniform 256-bin histogram

15 × 15 entropy via uniform 256-bin histogram
Local statistics exploration

global SVD filtering (50 out of 384 components)

global SVD residual (50 out of 384 components)
Local statistics exploration: ROI detail

Catphan cone-beam 125kV X-ray ($\theta = 21^\circ$)

global and ROI-specific 32-bin histograms
Local statistics exploration: ROI detail

7 × 7 mean

15 × 15 mean
Local statistics exploration: ROI detail

7 × 7 standard deviation

15 × 15 standard deviation
Local statistics exploration: ROI detail

7 × 7 median

15 × 15 median
Local statistics exploration: ROI detail

- 7 × 7 median absolute deviation (MAD)
- 15 × 15 median absolute deviation (MAD)
Local statistics exploration: ROI detail

7 × 7 dynamic range (log-scale) 15 × 15 dynamic range (log-scale)
Local statistics exploration: ROI detail

7 × 7 entropy via locally adaptive 32-bin histograms

15 × 15 entropy via locally adaptive 32-bin histograms
Local statistics exploration: ROI detail

- 7 × 7 entropy via uniform 256-bin histogram
- 15 × 15 entropy via uniform 256-bin histogram
Local statistics exploration: ROI detail

- Regional SVD filtering (20 out of 80 components)
- Regional SVD residual (20 out of 80 components)
Accuracy Results

CPU: 4 x AMD Opteron™ Processor 6376 @ 2.3 GHz (4 x 16 cores), 128 GB DDR3

GPU: NVIDIA Tesla K20c, 13 SMs @ 0.7 GHz (13 x 192 = 2496 cores), 5 GB GDDR5

Single precision error in Mean and STD for 1000x1000 image

![Graph showing error vs. tile size](image)

Histogram difference for same ROI

![Histogram showing frequency](image)
Timing Results

LA-SAS kernels precomputations with different image-tile sizes

Timing results for different tile sizes

Timing results for different image sizes
Timing Results

Throughput results for different image sizes

Timing results for different image sizes
localStat: vs MATLAB GPU

Iliopoulos, Floros, Pitsianis, Sun, Yin, Ren (Duke|AUTH) Locally Adaptive Signal-Noise Analysis GTC-2016 Apr 6, 2016 27 / 33
Timing Results

localStats Kernel over image size

<table>
<thead>
<tr>
<th>Image Size</th>
<th>Time (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>1500</td>
<td>15</td>
</tr>
<tr>
<td>2000</td>
<td>20</td>
</tr>
<tr>
<td>2500</td>
<td>25</td>
</tr>
<tr>
<td>3000</td>
<td>30</td>
</tr>
</tbody>
</table>

- $T = 20 \times 20$ localStat
- $T = 20 \times 20$ MATLAB

localStats Kernel over image size

<table>
<thead>
<tr>
<th>Image Size</th>
<th>Time (msec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>5</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>1500</td>
<td>15</td>
</tr>
<tr>
<td>2000</td>
<td>20</td>
</tr>
<tr>
<td>2500</td>
<td>25</td>
</tr>
<tr>
<td>3000</td>
<td>30</td>
</tr>
</tbody>
</table>

- $T = 30 \times 30$ localStat
- $T = 30 \times 30$ MATLAB

Iliopoulos, Floros, Pitsianis, Sun, Yin, Ren (Duke|AUTH)
Locally Adaptive Signal-Noise Analysis
GTC-2016 Apr 6, 2016 28 / 33
Timing Results

Timing ratio between whole image and tile for `localStats`

![Graph showing timing ratio between whole image and tile for `localStats` with data points for different image sizes and tile sizes.]

Timing ratio between whole image and tile for `localStats`

![Graph showing timing ratio between whole image and tile for `localStats` with data points for different image sizes and tile sizes.]

Iliopoulos, Floros, Pitsianis, Sun, Yin, Ren (Duke|AUTH)
Locally Adaptive Signal-Noise Analysis
GTC-2016 Apr 6, 2016 29 / 33
Timing Results

Multiple kernels all timings

Timing for histogram prefix sum

Iliopoulos, Floros, Pitsianis, Sun, Yin, Ren (Duke|AUTH) Locally Adaptive Signal-Noise Analysis GTC-2016 Apr 6, 2016 30 / 33
Acknowledgements

- ARO Equipment Grant #W911NF-13-1-0344
- NVIDIA Academic Research Equipment Support
References

