
Simulating a quantum annealer with
GPU-based Monte Carlo algorithms
Mayssam Mohammadi Nevisi
Mani Ranjbar
James King
Sheir Yarkoni
Jeremy P. Hilton
Catherine C. McGeoch

April 6, 2016



©2016 D-Wave Systems Inc. All rights reserved.

Introduction

2 / 27



©2016 D-Wave Systems Inc. All rights reserved.

D-Wave QPU

I Quantum annealing chip
I Highly specialized co-processor
I Physical implementation of an

NP-hard optimization problem
I Physical heuristic algorithm runs

on the chip
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Ising Minimization

Given:
I A graph G = (V , E)

I A collection of weights h = {hi : i ∈ V} and
J = {Jij : (i , j) ∈ E} (the Hamiltonian)

Assign:
I Values from {−1, +1} to n spin variables s = {si}

Such that we minimize the energy function:

E(s) =
∑
i∈V

hisi +
∑

(i,j)∈E

Jijsisj .
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Chimera topology

I Ck is a k × k grid of dense K4,4
“unit cells”

Processor Topology Qubits
D-Wave One C4 128
D-Wave Two C8 512
D-Wave 2X C12 1152

I Chimera topologies are bipartite
I Any graph can be embedded in

a Chimera graph via minor
embedding
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Simulated (Thermal) Annealing

I Heuristic optimization algorithm
that simulates classical thermal
annealing

I System of spins moves randomly
in state space

I Cools slowly from hot
(random/explorative) to cold
(greedy/exploitative)

I Uses thermal activation to jump
over energy barriers

Thermal Jump

Configuration
(state)

Energy
(cost)
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Quantum Annealing

I Quantum annealing (QA) is
related to adiabatic quantum
computing (AQC)

H(t) = A(t) · Hinit + B(t) · Hprob.

I Takes advantage of thermal
activation just like classical
annealing

I Also has a new complementary
resource: quantum tunneling.

Thermal Jump

Quantum
Tunneling

Configuration
(state)

Energy
(cost)
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Motivation for GPU Solvers
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Why develop optimized GPU implementations?

I Quantum computers are
hard to simulate

I Even approximate
simulations via Monte
Carlo methods can be slow

Between some
quantiles and system
sizes we observe a
prefactor advantage
[for D-Wave] as high
as 108.
- Denchev et al. (2015)
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Why develop optimized GPU implementations?

I Software solvers slow down our experiments
”This experiment occupied millions of processor cores
for several days to tune and run the classical
algorithms for these benchmarks.”

- Denchev et al. (2015)

I Faster solvers → faster experimental cycle → improved
understanding of our chips

I Fast GPU simulation leads to better quantum computers!
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Algorithms and GPU suitability

I Good/interesting classical solvers for
Chimera Ising problems fall into two
categories:

I Low-treewidth local search
I Single-spin Monte Carlo algorithms

I Low-treewidth local search is not
suitable.

I Memory requirements are too high
I Limited parallelizability.

I Single-spin Monte Carlo algorithms are
ideal!

I Very low memory requirements
I Highly parallelizable.
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Algorithms
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Simulated Annealing

I Single-spin updates
I Flipping this spin would lead to a change in energy ∆E
I Probability of accepting the spin flip is min(1, e−β∆E )

Algorithm 1 Simulated Annealing
1: for each sample to be taken do
2: for i = 1 to num sweeps do
3: β := betas[i]
4: for spin in spins do
5: calculate ∆Espin
6: flip spin with probability min(1, e−β∆Espin )
7: end for
8: end for
9: end for
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bipartite graph means half of the
spin updates can be done in parallel
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Parallel Tempering

I Instead of one Markov chain that
slowly goes from high to low
temperature:

I Use an ensemble of
fixed-temperature Markov chains
(“replicas”)

I Replicas form a “temperature
ladder”

I Replicas can exchange
temperatures with neighbouring
chains on the ladder with
probability min(1, e(Ei−Ej )(βi−βj ))
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Approximate Simulations of Quantum Annealing

Quantum Monte Carlo†

I Many replicas of the
system (Trotter slices)
representing different
points in imaginary time

I Path-integral Monte Carlo
method

I We implement the ‘discrete
time’ variant

† QMC can reproduce QA
equilibrated statistics, but doesn’t
simulate its dynamics.

Spin Vector Monte Carlo

I Mean-field approximation
I Simulates coherence but

no entanglement
I Each spin is represented

by an angle
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GPU Simulated Annealing
Implementation
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Thread Structure — Hamiltonian

I One unit cell per thread
I Cell Hamiltonian stored as floats in

40 registers

8 fields (h)
16 in-tile couplings (J)

+ 16 inter-tile couplings† (J)
40 registers

I Compiler uses additional 39 registers
per thread

† Each inter-tile coupling is stored in two threads
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Thread Structure — States

I Each state is +1 or −1
I Each state is accessed by multiple

threads for energy calculation

States must be stored in
shared memory!

I 8k2 states per sample
I Storing as floats is faster than

packing bits; registers are still the
limiting factor†

† For parallel tempering and quantum Monte
Carlo we pack bits because we have up to 64
replicas
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Block Structure

I 79 registers per thread
I k2 threads per sample
I 65,536 registers per SM (Maxwell)
I Each SM can run

⌊ 65,536
79k2

⌋
samples in

parallel

Topology C4 C8 C12

Concurrent
samples 51 12 5
per SM
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Fast Random Number Generation

I A significant fraction of running time is
used to generate random numbers.

I We use xorshift random number
generators

I 2-3 times faster than cuRand
I Imperfect but still suitable for

applications that are not highly sensitive
to RNG quality.
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Fast Approximations of Mathematical Functions

I Exponentiation is necessary to
determine flip probabilities

I Sine and cosine are used in Spin Vector
Monte Carlo

I CPU implementations often cache
function values in lookup tables

I Not feasible for GPUs due to memory
restrictions

I CUDA to the rescue! Intrinsic fast math
functions are:

I Faster than regular math functions or
Taylor approximations

I Accurate enough for our Monte Carlo
algorithms

x

f (x)

f (x) = sin x

f (x) = min(1, e−x )
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Results
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Implementation Speeds

I Code is still being fine-tuned
I Significant speedup over CPU seen in all four algorithms
I Huge spin flip/nanosecond/dollar improvement over CPUs
I Actual numbers to be released in a forthcoming paper
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Breakdown of Runtime — Simulated Annealing

35%

25%

35%

5%

Delta energy calculation
Random number generation
Spin flip tests (exp function)
Other
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Conclusion
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Recap

I Quantum processors are very hard to simulate classically
I Monte Carlo algorithms are among the best tractable

approximations
I Monte Carlo algorithms with single-spin updates are ideal

for GPU
I We can achieve significant speedups even over a more

expensive CPU

26 / 27



©2016 D-Wave Systems Inc. All rights reserved.

Looking to the Future

I Future D-Wave chips will be bigger
and denser

I Future NVIDIA chips will be bigger
and faster (more registers per SM?)

I GPUs should continue to beat CPUs
for Monte Carlo algorithms with
single-spin updates

I Algorithms with low-treewidth
updates unlikely to become feasible
for GPUs
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