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Introduction to Plasma Accelerators
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few fs

10 - 100 µm
Plasma period

e- bunch

‣ cm-scale plasma target (ionized gas) 
‣ Laser pulse or electron beam drives the wake  
‣ Length scale of accelerating structure: Plasma wavelength (µm scale) 
‣ Charge separation induces strong electric fields (~100 GV/m) 

Example of a Laser-driven Wakefield

Laser
Electron bunch

Plasma
Wakefield

Basic principle of Laser Wakefield Acceleration

Image taken from: http://features.boats.com/boat-content/files/2013/07/centurion-elite.jpg

Shrink accelerating distance from km to mm scale (orders of magnitude) 
+ Ultra-short timescales (few fs)

Laser

Wake formed by oscillating electrons 
due to static heavy ion background
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Modelling Plasma Physics with Particle-In-Cell Simulations
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Cell

Simulation Box

Particle

Charge and 
current PIC Cycle 

‣Charge/Current deposition on grid nodes 
‣ Fields are calculated ➔ Maxwell equations 
‣ Fields are gathered onto particles 
‣Particles are pushed ➔ Lorentz equation

Fields

�x

Grid

‣ Fields on discrete grid 
‣Macroparticles interact with fields

Millions of cells, particles and iterations!
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Productivity of a (Computational) Physicist
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Productivity  
(as a physicist)

Time

Python/Numba helped us  
speed up this process

Simulations take  
too long!

Develop novel algorithm + 
efficient parallelization…

Fast simulations, 
physical insights!

Our goal: Reasonably fast & accurate code with many features and user-friendly interface
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A Spectral, Quasi-3D PIC Code
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PIC Simulations in 3D are essential, but computationally demanding 
Majority of algorithms are based on finite-difference algorithms that introduce numerical artefacts 

Quasi-cylindrical symmetry 
‣Captures important 3D effects  

(Lifschitz et al., 2009) 
‣Computational cost similar to 2D code 

Spectral solvers 
‣Correct evolution of electromagnetic waves 

PSATD algorithm (Haber et al., 1973) 
‣Less numerical artefacts 

Combine best of both worlds ➞ Spectral & quasi-cylindrical algorithm
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A Spectral, Quasi-3D PIC Code
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FBPIC (Fourier-Bessel Particle-In-Cell) 
(R. Lehe et al., 2016)

‣Written entirely in Python and uses Numba Just-In-Time compilation  

‣Only single-core and not easy to parallelize due to global operations (FFT and DHT)

Algorithm developed  
by Rémi Lehe
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Parallelization Approach for Spectral PIC Algorithms
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Spectral 
Transformations

Not easy to parallelize by domain decomposition, due to FFT & DHT.

Standard (FDTD) 
Domain Decomposition

Local Transformations & 
Domain Decomposition

global communicationlocal exchange
arbitrary accuracy

Local parallelization of global operations & global domain decomposition

local communication & exchange
high accuracylow accuracy
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Parallelization Concept
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RAMCPU GPU

LOCAL AREA NETWORK

NODE

CLUSTER
DEVICE MEMORY

Shared and distributed memory layouts ➞ Two-level parallelization entirely with Python

Typical HPC infrastructureIntra-node parallelization 
‣Shared memory layout 
‣GPU (or multi-core CPU) 
‣Parallel PIC methods & 

Transformations 
‣Numba + CUDA

Inter-node parallelization 
‣Distributed memory layout 
‣Multi-CPU / Multi-GPU 
‣Spatial domain decomposition 

for spectral codes (Vay et al., 2013)  

‣mpi4py 
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Intra-Node Parallelization of PIC Methods
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Particles 

‣ Particle push: Each thread updates one particle 

‣ Field gathering: Some threads read same field value 

‣ Field deposition: Some threads write same field value 
➞ race conditions!

Fields 

‣ Field push and current correction: Each thread 
updates one grid value 

‣ Transformations: Use optimized parallel algorithms

Intra-node parallelization ➞ CUDA with Numba
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CUDA Implementation with Numba
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Fields 

‣Transformation ➞ CUDA Libraries 

‣ Field push & current correction per-cell

Particles 

‣ Field gathering and particle push per-particle 

‣ Field deposition ➞ Particles are sorted and 
each thread loops over particles in its cell
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CUDA Implementation with Numba
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Simple CUDA kernel  
in FBPIC

‣Simple interface for writing CUDA kernels 

‣Made use of cuBLAS, cuFFT, RadixSort 

‣Manual Memory Management 
Data is kept on GPU / only copied to CPU for I/O 

‣Almost full control over CUDA API 

‣Ported code to GPU in less than 3 weeks
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Single-GPU Performance Results
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Intel Xeon
E5-2650 v2
(single-core)

Nvidia
M2070

Nvidia
K20m

Nvidia
K20x

77
67

26
1

Particle push

Field deposition

Field gathering

Particle sort

Field push

FFT

DHT

29.0%

7.9%
14.0%

8.3%

6.8%

14.0%

20.0%

Speed-up of up to ~70  
compared to single-core CPU version

20 ns per particle per step

Runtime distribution of the GPU PIC methodsSpeed-up on different Nvidia GPUs
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Parallelization of FBPIC
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PSATD 
Transformations

Standard FDTD 
Domain Decomposition

Local Transformations & 
Domain Decomposition

global communicationlocal exchange
limited accuracy

local communication & exchange
high accuracylow accuracy

✘ ✔ ?
work in progress
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Inter-Node Parallelization
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Process 0Spatial domain decomposition 

‣Split work by spatial decomposition 
‣Domains computed in parallel 
‣Exchange local information at 

boundaries  
‣Order of accuracy defines guard 

region size (Large guard regions 
for quasi-spectral accuracy)

Concept of domain decomposition in the longitudinal direction

Local field and 
particle exchange

Process 1 Process 2 Process 3

overlapping 
guard regions

Domain 2

Domain 1
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Scaling of the MPI version of FBPIC
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Strong scaling on JURECA supercomputer (Nvivida K80) 
Preliminary results (not optimized)
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GPU Scaling of FBPIC

For productive and fast simulations: 4-32 GPUs more than enough!

guard region size  
=  

local domain size 

16384x512 cells 
64 guard cells per domain

Best strategy for our case:  
Extensive Intra-node 

parallelization on the GPU and 
only a few Inter-node domains.
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Summary
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‣Motivation: Efficient and easy parallelization of a novel PIC algorithm to  
combine speed, accuracy and usability in order to work productively as a physicist 

‣FBPIC is entirely written in Python (easy to develop and maintain the code) 

‣ Implementation uses Numba (JIT compilation and interface for writing CUDA-Python) 

‣ Intra- and Inter-node parallelization approach suitable for spectral algorithms 

‣Single GPU well suited for global operations (FFT & DHT) 

‣Enabling CUDA support for the full code took less than 3 weeks 

‣Multi-GPU parallelization by spatial domain decomposition with mpi4py 

‣Outlook: Finalize Multi-GPU, CUDA Streams, GPU Direct, OpenSourcing of FBPIC
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