
GTC 2016

Kazuaki Ishizaki (kiszk@acm.org) +, Gita Koblents -,

Alon Shalev Housfater -, Jimmy Kwa -, Marcel Mitran –,

Akihiro Hayashi *, Vivek Sarkar *

+ IBM Research – Tokyo
- IBM Canada

* Rice University

Easy and High Performance
GPU Programming for Java Programmers

1

Java Program Runs on GPU with IBM Java 8

2 Easy and High Performance GPU Programming for Java Programmers

http://www-01.ibm.com/support/docview.wss?uid=swg21696670 https://devblogs.nvidia.com/parallelforall/
next-wave-enterprise-performance-java-power-systems-nvidia-gpus/

Java Meets GPUs

3 Easy and High Performance GPU Programming for Java Programmers

What You Will Learn from this Talk

How to program GPUs in pure Java
–using standard parallel stream APIs

How IBM Java 8 runtime executes the parallel program on

GPUs
–with optimizations without annotations
 GPU read-only cache exploitation

 data copy reductions between CPU and GPU

 exception check eliminations for Java

Achieve good performance results using one K40 card with
–58.9x over 1-CPU-thread sequential execution on POWER8

–3.7x over 160-CPU-thread parallel execution on POWER8

4 Easy and High Performance GPU Programming for Java Programmers

Outline

Goal

Motivation

How to Write a Parallel Program in Java

Overview of IBM Java 8 Runtime

Performance Evaluation

Conclusion

5 Easy and High Performance GPU Programming for Java Programmers

Why We Want to Use Java for GPU Programming

High productivity
–Safety and flexibility

–Good program portability among different machines
 “write once, run anywhere”

– Ease of writing a program
 Hard to use CUDA and OpenCL for non-expert programmers

Many computation-intensive applications in non-HPC area
–Data analytics and data science (Hadoop, Spark, etc.)

–Security analysis (events in log files)

–Natural language processing (messages in social network system)

6 Easy and High Performance GPU Programming for Java Programmers From https://www.flickr.com/photos/dlato/5530553658

Programmability of CUDA vs. Java for GPUs

CUDA requires programmers to explicitly write operations for
–managing device memories

– copying data

between CPU and GPU

–expressing parallelism

 Java 8 enables programmers

to just focus on
–expressing parallelism

7 Easy and High Performance GPU Programming for Java Programmers

// code for GPU
__global__ void GPU(float* d_a, float* d_b, int n) {
int i = threadIdx.x;
if (n <= i) return;
d_b[i] = d_a[i] * 2.0;

}

void fooJava(float A[], float B[], int n) {
// similar to for (idx = 0; i < n; i++)
IntStream.range(0, N).parallel().forEach(i -> {
b[i] = a[i] * 2.0;

});
}

void fooCUDA(N, float *A, float *B, int N) {
int sizeN = N * sizeof(float);
cudaMalloc(&d_A, sizeN); cudaMalloc(&d_B, sizeN);
cudaMemcpy(d_A, A, sizeN, HostToDevice);
GPU<<<N, 1>>>(d_A, d_B, N);
cudaMemcpy(B, d_B, sizeN, DeviceToHost);
cudaFree(d_B); cudaFree(d_A);

}

Safety and Flexibility in Java

Automatic memory management
–No memory leak

Object-oriented

 Exception checks
–No unsafe

memory accesses

8 Easy and High Performance GPU Programming for Java Programmers

float[] a = new float[N], b = new float[N]
new Par().foo(a, b, N)
// unnecessary to explicitly free a[] and b[]

class Par {
void foo(float[] a, float[] b, int n) {

// similar to for (idx = 0; i < n; i++)
IntStream.range(0, N).parallel().forEach(i -> {

// throw an exception if
// a[] == null, b[] = null
// i < 0, a.length <= i, b.length <= i
b[i] = a[i] * 2.0;

});
}

}

Portability among Different Hardware

How a Java program works
– ‘javac’ command creates machine-independent Java bytecode

– ‘java’ command launches Java runtime with Java bytecode
 An interpreter executes a program by processing each Java bytecode

 A just-in-time compiler generates native instructions for a target machine

from Java bytecode of a hotspot method

9 Easy and High Performance GPU Programming for Java Programmers

Java
program
(.java)

Java
bytecode
(.class,
.jar)

Java runtime

Target machine

Interpreter
just-in-time

compiler> javac Seq.java > java Seq

Outline

Goal

Motivation

How to Write a Parallel Program in Java

Overview of IBM Java 8 Runtime

Performance Evaluation

Conclusion

10 Easy and High Performance GPU Programming for Java Programmers

How to Write a Parallel Loop in Java 8

 Express parallelism by using parallel stream APIs

among iterations of a lambda expression (index variable: i)

11 Easy and High Performance GPU Programming for Java Programmers

IntStream.range(0, 5).parallel().
forEach(i -> { System.out.println(i);}); 0

3
2
4
1

Example

Reference implementation of Java 8 can execute this
on multiple CPU threads

println(0) on thread 0

println(3) on thread 1

println(2) on thread 2

println(4) on thread 3

println(1) on thread 0

time

Outline

Goal

Motivation

How to Write and Execute a Parallel Program in Java

Overview of IBM Java 8 Runtime

Performance Evaluation

Conclusion

12 Easy and High Performance GPU Programming for Java Programmers

Portability among Different Hardware (including GPUs)

A just-in-time compiler in IBM Java 8 runtime generates

native instructions
– for a target machine including GPUs from Java bytecode

– for GPU which exploit device-specific capabilities more easily than

OpenCL

13 Easy and High Performance GPU Programming for Java Programmers

Java
program
(.java)

Java
bytecode
(.class,
.jar)

IBM Java 8 runtime

Target machine

Interpreter

just-in-time
compiler

> javac Par.java > java Par for GPU

IntStream.range(0, n)
.parallel().forEach(i -> {
...

});

IBM Java 8 Can Execute the Code on CPU or GPU

Generate code for GPU execution from a parallel loop
–GPU instructions for code in blue

–CPU instructions for GPU memory manage and data copy

 Execute this loop on CPU or GPU base on cost model
–e.g., execute this on CPU if ‘n’ is very small

14 Easy and High Performance GPU Programming for Java Programmers

class Par {
void foo(float[] a, float[] b, float[] c, int n) {

IntStream.range(0, n).parallel().forEach(i -> {
b[i] = a[i] * 2.0;
c[i] = a[i] * 3.0;

});
}
}

Note: GPU support in current version is limited to lambdas with one-dimensional arrays and primitive types

Optimizations for GPUs in IBM Just-In-Time Compiler

Using read-only cache
– reduce # of memory transactions to a GPU global memory

Optimizing data copy between CPU and GPU
– reduce amount of data copy

 Eliminating redundant exception checks for Java on GPU
– reduce # of instructions in GPU binary

15 Easy and High Performance GPU Programming for Java Programmers

Using Read-Only Cache

Automatically detect a read-only array and access it thru read-

only cache
– read-only cache is faster than other memories in GPU

16 Easy and High Performance GPU Programming for Java Programmers

float[] A = new float[N], B = new float[N], C = new float[N];
foo(A, B, C, N);

void foo(float[] a, float[] b, float[] c, int n) {
IntStream.range(0, n).parallel().forEach(i -> {

b[i] = a[i] * 2.0;
c[i] = a[i] * 3.0;

});
}

Equivalent to CUDA code

__device__ foo(*a, *b, *c, N)
b[i] = __ldg(&a[i]) * 2.0;
c[i] = __ldg(&a[i]) * 3.0;

}

Optimizing Data Copy between CPU and GPU

 Eliminate data copy from GPU to CPU
– if an array (e.g., a[]) is not written on GPU

 Eliminate data copy from CPU to GPU
– if an array (e.g., b[] and c[]) is not read on GPU

17 Easy and High Performance GPU Programming for Java Programmers

void foo(float[] a, float[] b, float[] c, int n) {
// Data copy for a[] from CPU to GPU
// No data copy for b[] and c[]
IntStream.range(0, n).parallel().forEach(i -> {

b[i] = a[i] * 2.0;
c[i] = a[i] * 3.0;

});
// Data copy for b[] and c[] from GPU to CPU
// No data copy for a[]

}

Optimizing Data Copy between CPU and GPU

 Eliminate data copy between CPU and GPU
– if an array (e.g., a[] and b[]), which was accessed on GPU, is not

accessed on CPU

18 Easy and High Performance GPU Programming for Java Programmers

// Data copy for a[] from CPU to GPU
for (int t = 0; t < T; t++) {

IntStream.range(0, N*N).parallel().forEach(idx -> {
b[idx] = a[...];

});
// No data copy for b[] between GPU and CPU
IntStream.range(0, N*N).parallel().forEach(idx -> {

a[idx] = b[...];
}
// No data copy for a[] between GPU and CPU

}
// Data copy for a[] and b[] from GPU to CPU

How to Support Exception Checks on GPUs

 IBM just-in-time compiler inserts exception checks in GPU

kernel

19 Easy and High Performance GPU Programming for Java Programmers

// code for CPU
{
...
launch GPUkernel(...)
if (exception) {

goto handle_exception;
}
...

}

__device__ GPUkernel(…) {
int i = ...;
if ((a == NULL) || i < 0 || a.length <= i) {

exception = true; return; }
if ((b == NULL) || b.length <= i) {

exception = true; return; }
b[i] = a[i] * 2.0;
if ((c == NULL) || c.length <= i) {

exception = true; return; }
c[i] = a[i] * 3.0;

}

// Java program
IntStream.range(0,n).parallel().
forEach(i -> {
b[i] = a[i] * 2.0;
c[i] = a[i] * 3.0;

});

Eliminating Redundant Exception Checks

Speculatively perform exception checks on CPU if the form of

an array index is simple (xi + y)

20 Easy and High Performance GPU Programming for Java Programmers

// code for CPU
if (
// check conditions for null pointer
a != null && b != null && c != null &&
// check conditions for out of bounds of array index
0 <= a.length && a.length < n &&
0 <= b.length && b.length < n &&
0 <= c.length && c.length < n) {
...
launch GPUkernel(...)
...

} else {
// execute this loop on CPU to produce an exception

}

__device__ GPUkernel(…) {
// no exception check is
// required
i = ...;
b[i] = a[i] * 2.0;
c[i] = a[i] * 3.0;

}

IntStream.range(0,n).parallel().
forEach(i -> {

b[i] = a[i] * 2.0;
c[i] = a[i] * 3.0;

});

Outline

Goal

Motivation

How to Write and Execute a Parallel Program in Java

Overview of IBM Java 8 Runtime

Performance Evaluation

Conclusion

21 Easy and High Performance GPU Programming for Java Programmers

Performance Evaluation Methodology

 Measured performance improvement by GPU using four programs (on

next slide) over

–1-CPU-thread sequential execution

–160-CPU-thread parallel execution

 Experimental environment used
– IBM Java 8 Service Release 2 for PowerPC Little Endian
 Download for free at http://www.ibm.com/java/jdk/

–Two 10-core 8-SMT IBM POWER8 CPUs at 3.69 GHz with 256GB

memory (160 hardware threads in total)
 With one NVIDIA Kepler K40m GPU (2880 CUDA cores in total) at 876 MHz

with 12GB global memory (ECC off)

–Ubuntu 14.10, CUDA 5.5

22 Easy and High Performance GPU Programming for Java Programmers

Benchmark Programs

Prepare sequential and parallel stream API versions in Java

23 Easy and High Performance GPU Programming for Java Programmers

Name Summary Data size Type

MM A dense matrix multiplication: C = A.B 1,024 × 1,024 double

SpMM A sparse matrix multiplication: C = A.B 500,000×

500,000

double

Jacobi2D Solve an equation using the Jacobi method 8,192 × 8,192 double

LifeGame Conway’s game of life. Iterate 10,000 times 512 × 512 byte

Performance Improvements of GPU Version over
Sequential and Parallel CPU Versions

 Achieve 58.9x on geomean and 317.0x for Jacobi2D over 1 CPU thread

 Achieve 3.7x on geomean and 14.8x for Jacobi2D over 160 CPU threads

 Degrade performance for SpMM against 160 CPU threads

Easy and High Performance GPU Programming for Java Programmers24

Conclusion

Program GPUs using pure Java with standard parallel stream

APIs

Compile a Java program without annotations for GPUs by IBM

Java 8 runtime with optimizations
– read-only cache exploitation

–data copy optimizations between CPU and GPU

–exception check eliminations

Offer performance improvements using GPUs by
–58.9x over sequential execution

–3.7x over 160-CPU-thread parallel execution

25 Easy and High Performance GPU Programming for Java Programmers

Details are in our paper “Compiling and Optimizing Java 8 Programs for GPU Execution” (PACT2015)

