Looking at Ultrasound Signal Processing on Low-Power GPUs

Anne C. Elster (*) and Bjørn Tungesvik

Dept. of Computer & Info. Science
Norwegian University of Science and Technology (NTNU)

(*) Currently on Sabbatical at
ICES (Inst. For Computational Science & Engineering)
University of Texas at Austin (until Aug 2016)
Acknowledgements

- My Master student **Bjørn Tungesvik** who did all the implementations!
Acknowledgements

• My Master student Bjørn Tungesvik who did all the implementations!

• Optimization ideas from my PhD student Rune Jensen

• Prof. Bjørn Angelsen and his SURF team including:
 – Ola Fineng Myhre, PhD student and mentor
 – Ole Martin Brende, PhD student
 – Johannes Kvam, PhD student (Elster is co-advisor)
 – Stian Solstad (Master student, 2015)
 – Ali Fatemi (Master student, 2015)
GPU history and HPC-Lab at NTNU

- Started working on GPUs for compute in 2006 with two of my master students
- Founded HPC-Lab in 2008, same year also got into NVIDIA's Professor Partnership program
- Elster has advised several PhD students and 30+ master theses on GPU computing
 (Elster has so far been main advisor for 66 master students)
- Finishing up CUDA book based on work with classes and students
- PI/Co-PI of NVIDIA CUDA/GPU Centers at both NTNU and UT Austin
Close collaboration with NTNU’s MedTech Imaging groups (since 2006)

HPC-Lab members and Tucker Taft, Spring 2014
Trondheim, Norway on the world map
NTNU Gløshaugen
(formerly Norwegian Institute of Technology)

U of Texas at Austin
Inspirational questions:

• Can we use embedded devices for High Performance Computing (HPC)?

• If so, how well do they do for some basic algorithms?

• How about filtering for bleeding edge ultrasound processing?
 – Q: Why do we care about this?
 – A: Move processing capability to the wand!!
What is Ultrasound?

- American Standards Instituted defines it to be > 20KHz

- Upper frequency limit of hearing by humans (may have auditory sensation of high-intensity ultrasound waves if feed sound directly to bone)
Ultrasound fun facts

- Bats can detect frequencies beyond 100kHz

- “Mosquito” devices
 - Teenagers 17.4KHz-20KHz anti-loitering.
 - Parent-avoiding ringtones..

- Polaroid introduced sonar based autofocus in 1978 with its Sonar One Step camera
 - The popular SX-70 uses same ultrasound tech later licensed for many applications
 - Later licensed for lot of other applications
3D ultrasound

Used for:

• Early detection of tumors
• Visualization of fetuses
• Blood flows in organ and fetuses

• http://www.ta.no/grenland/det-forste-portrettet/s/1-111-2263836
How does medical ultrasound work?

• Wand with array of piezo-electric elements
 – If applied voltage -> vibrate
 – If vibrate -> generate voltage

1. Transmit HF (1-5MHz) sound pulse
2. Pulse hits tissue boundaries
 E.g. fluid-soft tissue, soft-tissue-bone
3. Some wave reflected back to prove, some travel further
4. Reflect waves picked up by probe & relayed
5. Calculate dist from probe to tissue/organs using speed of sound in tissue (540m/s)
6. Machine displays distance and intensities of echoes as image
Beamforming

Direct ultrasound waves (signals) to some focus by delaying & combining signals sent to element
Beamforming

Direct ultrasound waves (signals) to some focus by delaying & combining signals sent to element

In ultrasound:
• Transmit with fixed focus
• Receive with either fixed or dynamic focus
• Standard beamforming: DAS (delay&sum)
Beam forming

Appearance in image
Scattering
Overlap
Irregular Wavefront

Irregular mixture of fat and tissue \rightarrow Heterogenous characteristics

Ultrasound machines assumes 1st order scattering, so
Multiple scattering noise
SURF Ultrasound Imaging
(Second Order Ultrasound Field or dual-band)

- Normal pulse

- SURF pulse
Ultrasound issues contin.

• Using same transmit and receiver beam
 -> large point-spread function (blurring) at each depth
 -> limited ability to resolve scattering

• Reducing point-spread fn implies synthetic focus at each depth!
Dynamic Aperture Focusing

- Adjust aperture of beam as we receive ensuring have beam at each focus P

$$\Delta x = \frac{\lambda F}{D},$$

Δx – beam width
λ – wavelength
F – focus point
D – aperture
Ultrasound issues contin.

• Reducing point-spread fn implies synthetic focus at each depth!
 – Achieved by creating filter based on Westerwelt eqn.,
 -- simplified model of “Nonlinear Imaging with dual band pulse complexes” by Angelsen and Tangen

• Transversal filtering technique allows for synthetic depth variable for 1st order scattering
What we achieved:

• Our initial goal was 20 FPS,
 – i.e 50 ms of processing per frame.

• Our synthetic dynamic focusing algorithm on the Jetson TK1 is able to process a frame in **24 milliseconds**!

• Our method also tested on more powerful GPU PC hardware --able to process same data set in **8.8 ms**.
MIMD Parallella and SIMT Kepler

SIMT

Instruction stream

Data streams

CU | CU | CU | CU

MIMD

Instruction stream

Data stream

CU | CU | CU | CU
Memory bandwidth test
(Using NVIDIA Bandwidth test and STREAM)

<table>
<thead>
<tr>
<th>Operation</th>
<th>Memory Module</th>
<th>Transfer speed</th>
</tr>
</thead>
<tbody>
<tr>
<td>HOST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R/W DRAM</td>
<td>Pageable</td>
<td>4964.3 MB/s</td>
</tr>
<tr>
<td>Copy to device</td>
<td>Pageable</td>
<td>1404.5 MB/s</td>
</tr>
<tr>
<td>Copy to device</td>
<td>Page-locked</td>
<td>998.2 MB/s</td>
</tr>
<tr>
<td>DEVICE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copy from Device</td>
<td>Pageable</td>
<td>1447.7 MB/s</td>
</tr>
<tr>
<td>Copy from Device</td>
<td>Page-locked</td>
<td>5464.4 MB/s</td>
</tr>
<tr>
<td>Device to device</td>
<td>Pageable</td>
<td>11885 MB/s</td>
</tr>
<tr>
<td>Device to device</td>
<td>Page-locked</td>
<td>3127.7 MB/s</td>
</tr>
</tbody>
</table>

This test showed that the Jetson much faster than Parallella board.
Julia, Matrix mult & N-body
Testing -- 2D FFTs
64x64, 128x128, 256x256 and 512x512
Testing: Memory Layout

Bank 0
Code

Bank 1
Ping buffer

Bank 2
Pong buffer

Bank 3
Twiddle factors
Mailbox
FFTs and Batched FFTs (128x128)
RF data without & with adjustments
CIRS Phantom (Model 040GSE)

1. Near field – 5 targets
 - Depth 1-5mm
 - Diam. 100 microns
 - 1 mm spacing

2. Vertical group with 4 targets
 - 1-4cm
 - Diam. 1-100 microns
 - 10 mm spacing

3. Horizontal group with two gray scale targets
 - Contrast resol. +6 and > 15db, Diam 8mm

4. Horizontal group, 3 targets
 - Depth 4cm
 - Diam. 100 microns
 - Spacing 10 mm
Dataset

- Acquired using 40MHz sampling freq.
- Transducer with 128 channels
- Gave matrix of ca. 128 x 2080
- Divided into 40 windows (→ 52 samples/window)
- With overlap: 104 samples/window
- Adding padding to avoid circular convolution: 144
- Padding to nearest 2-factor: 256
- Pad also laterally: 128 to 256
- → need 40 FFTs, inv FFT and Hadamards products/frame
Convolution

\[Y(n) = F(n)G(n) \]

\[\text{IFFT2D}(Y) \]
4mm
Conclusions

• Ultrasound processing requires High Performance Computing

• HPC = Heterogenous and Parallel Comptuing

• Realt-time requirement met on the Tegra TK1 kit for our Ultrasound filtering for synthetic dynamic focusing
Furture work

- Look at the Tegra TX1!
- Move the processing to the transducer
TK1/Kepler

- GPU: SMX Kepler: 192 core
- CPU: ARM Cortex A15
 - 32-bit, 2 instr/cycle, in-order
 - 15GBs, LPDDR3, 28nm process
- GTX 690 and Tesla K10 cards have 3072 (2x1536) cores!
- Tesla K80 is 2.5x faster than K10
 - 5.6 TF TFLOPs single prec.
 - 1.87 TFLOPS Double prec.
- Nested kernel calls
- Hyper Q allowing up to 32 simultaneous MPI tasks

TX1/Maxwell

- GPU: SMX Maxwell: 256 cores
 - 1 TFLOPs/s
- CPU: ARM Cortex-A57
 - 64-bit, 3 instr/cycle, out-of-order
 - 25.6 GBs, LPDDR4, 20nm process
- Maxwell Titan with 3072 cores
- API and Libraries:
 - Open GL 4.4
 - CUDA 7.0
 - cuDNN 4.0
Thank you!

And to my Master student **Bjørn Tungesvik** who did all the implementations!

For further questions contact:

anne.elster@gmail.com