Accelerating Spark Workloads using GPUs

Rajesh Bordawekar, Minsik Cho, Wei Tan, Benjamin Herta, Vladimir Zolotov, Alexei Lvov, Liana Fong, and David Kung

IBM T. J. Watson Research Center
Outline

- Spark Background
- Opportunities for GPUs in Spark
- Spark GPU Integration Issues
- Our Approach
- GPU-enabled Spark in use
What is Spark?

- An in-memory distributed computing infrastructure
 - Implemented in Scala, uses JVMs for execution
- Parallel computations encoded using a fundamental data structure, Resilient Distributed Dataset (RDD)
 - Work on RDD gets distributed as per RDD partitions
- Supports high-level APIs in Java, Scala, Python, and R
- Provides libraries for SQL (Spark SQL), Machine Learning (MLlib/ML), Graph Analytics (GraphX), and Streaming (Spark Streaming)
- Supports data transfer to/from file systems such as HDFS
Spark Programming Model: RDDs

- A immutable distributed in-memory collection of elements
- Distributed-shared memory view of the cluster environment
- Computations on RDDs parallelized by default
 - Split into multiple partitions (each partition -> data subset)
 - Embarrassingly parallel execution on individual partitions
- Base type for other specialized data structures: Key-Value Pairs, Data Frames, Distributed Matrices, DStream, Triplets.
- RDD operations
 - Element-wise transformations from one RDD to another
 - Actions to compute results (actions do not generate RDDs)
 - Transformations triggered by actions in a lazy manner
 - Data “pulled” and “transformed” by actions
Spark Execution Flow

- **Four core components**
 - RDDs: Parallel Data Collections with Partitions
 - Moving towards DataFrames that are built over RDDs
 - DAG:
 - Logical graph of RDD operations of the entire program connecting different stages
 - Stages:
 - Each stage is a set of tasks that run in parallel
 - Ordering between different stages
 - Tasks:
 - Fundamental units of works; decided by the RDD partitions

GPU Integration Issues
Spark Execution Model: Drivers and Executors

- Spark application: A driver and multiple executors
- Overall execution split into stages, each with potentially different number of partitions
 - Data needs to be *shuffled* to create new partitions
- A Spark Driver invokes Executors to execute operations on the RDDs in embarrassingly-parallel manner
 - Each executor can use multiple threads
 - Transformations are element-wise data parallel over elements in a partition
 - Actions are task-parallel, one job per partition
- Spark application invoked by an external service called a cluster manager which uses one of the following schedulers
 - Spark Standalone, YARN, Mesos,...
Spark Memory Management

- The driver runs its own Java process and each executor is a separate Java process.
- Executor memory is used for following tasks:
 - RDD partition storage for persisting or caching RDDs. Partitions are deleted in LRU manner under memory constraints.
 - Intermediate data for shuffling.
 - User code.
- 60% allocated for RDD storage, 20% for shuffling, 20% for user code.
- Default caching uses MEMORY_ONLY storage level. Use persist with MEMORY_AND_DISK storage level.
- Spark can support OFF_HEAP memory for RDDs.
GPU Opportunities in Spark

- Computationally intensive workloads
 - Machine Learning/Analytics kernels in native Spark codes
 - *Sparkifying* existing GPU-enabled workloads (e.g., Caffe)

- Memory-intensive in-memory workloads
 - GraphX (both matrix and traversal based algorithms)
 - Spark SQL (mainly OLAP/BI queries)

- Two approaches: Accelerate an entire kernel or a hotspot

- System implications
 - A few nodes with multiple GPUs can potentially out-perform a scale-out cluster with multiple CPU nodes
 - Reduce the size of the cluster
 - Inter-node communication replaced by inter-GPU communication within a node
GPU Execution and Deployment Issues

- GPU execution inherently hybrid
 - GPU kernel invoked by CPU host program
 - Multiple kernels can be concurrently invoked on the GPU
 - “push” functional execution managed by the CPU(s)

- GPU memory separate than the host memory
 - Usually much smaller than the host CPU system
 - Data needs to be explicitly copied to/from the device memory
 - No garbage collection, but memory region can be reused across multiple kernel invocations

- Spark is a homogeneous cluster system
 - Spark resource manager can not exploit GPUs
A Spark partition is a basic unit of computation

Mapping a partition on GPUs:
- A kernel executing on a GPU
- A single GPU
- Multiple GPUs

A Spark instance can use one of these mappings during its execution
- Need a specialized hash function to reduce data shuffling

Spark partition can hold data larger than a GPU device memory
- Out-of-core execution or re-partitioning?
GPU Integration Issues: RDDs and Persistence

- Hybrid RDDs
 - RDD stored on the CPU, but stores data computed by the GPU

- Native GPU RDDs
 - RDDs created by GPU by transformations on hybrid RDDs
 - Data stored in device memory and not moved to the CPU
 - Native RDD have space limitations

- Actions can be implemented as GPU kernels
 - Operate on hybrid or native RDDs and return results to the CPU
 - Results of actions can be cached on the device memory
 - Any RDD operated by an GPU kernel must be (at least partially) materialized before GPU kernel execution

- GPU RDD Persistence
 - DEVICE_MEMORY
 - GPU device memory not garbage collected.
GPU Integration Issues: Supporting Spark Data Structures

- Spark uses a variety of data structures derived from RDDs
 - Data Frames, Key-Value Pairs, Triplets, Sparse and Dense matrices

- GPU performance depends on how data laid out in memory
 - Data may need to be shuffled to make it amenable for GPU acceleration
 - GPU-based RDDs can have specific memory layout options
 - Columnar RDD from IBM (Kandasamy and Ishizaki)

- Spark memory manager needs to be extended to enable GPU memory allocation and free
GPU Integration Issues: Clustering and resource Management

- Usually, the number of GPUs less than the available CPU virtual processors (\(\text{\#nodes} \times \text{SMT} \times \text{\#cores}\))
- Spark’s view of GPU resources
 - Access restricted to CPUs of the host node?
 - All nodes can access any GPU?
- Visibility to the Spark Cluster Manager
 - Number of threads used in a GPU kernel is usually very large
 - How does cluster manager assign executors to the GPUs (related to partition definition)
- Integration into Spark resource manager necessary
Spark GPU Integration: Three Key Approaches

- Use GPUs for accelerating Spark Libraries and operations without changing interfaces and underlying programming model. (Our approach)
- Automatically generate CUDA code from the source Spark Java code (K. Ishizaki, Thur 10 am, S6346)
- Integrating Spark with a GPU-enabled system (e.g., Spark integrated with Caffe)
Spark GPU Integration: Our Approach

- **Transparent** exploitation of GPUs without modifying existing Spark interfaces
 - Current Spark codes should be able to exploit GPUs without any user code change
 - Only need to update the Spark library being linked
 - Code runs using CPUs on nodes that do not have GPUs

- Focus on accelerating entire kernels
- Supports multiple node, multiple GPU execution
- Support for out-of-core GPU computations
- Initial focus on Machine learning kernels in Spark MLlib and ML directories
Spark GPU Integration: Our Assumptions

- A Spark partition covers single GPU (no concurrent execution of partitions)
 - A GPU kernel will run over only one GPU
 - Spark partitions from an executor mapped to different GPUs in a round-robin manner
- Native GPU RDDs have default DEVICE_MEMORY persistence
- RDDs can not be larger than the device memory
- Large datasets handled by using more smaller partitions
- GPU host memory will be allocated in a Java Heap
- GPU kernels use both cublas/cusparse and native code
- Support for both RDDs and DataFrames

GPU Integration Issues
Spark GPU Integration: Implementation Details

- Scala MLlib kernels modified without changing their interfaces
- Implementation supports multiple executors, each with multiple threads (each executor maps to a JVM)
- For each partition, data copied from Java heap to GPU device memory
 - GPU memory allocator uses CPU-based managed memory if GPU device memory allocation fails
- The GPUs are accessible to only one node and to the executors running on that node
- Partitions from different executors are mapped independently and using round-robin fashion
- Users turn on a Spark system variable to use GPU libraries
Spark Machine Learning Algorithms being accelerated

- Logistic Regression using LBFGS
- Logistic Regression Model Prediction
- Alternative Least Squares (W. Tan, S6211, Thur. 3.30 pm)
- ADMM using LBFGS
- Factorization Methods
- Elastic Net
- Word2Vec
- Nearest Neighbor using LSH and Superbits
- NNMF and PCA
- Investigating Deep Learning training within Spark

GPU Integration Issues
GPU-accelerated MLLib Kernel: ADMM

- Input data partitioned across executors using RDDs
- Each thread within an executor invokes a LBFGS solver
- The intermediate data is communicated to the driver for aggregation
- Each thread invokes a GPU kernel to implement the solver
Spark-GPU Integration: Some Observations

- GPUs are able to accelerate core kernels with substantial speedups over original code (e.g., 30X for Logistic Regression)
- End-to-end performance gain depends on performance of Spark functions
 - Performance of the LR affected by the costs of collating data (i.e., toArray()) in the Spark driver
- Effective mapping of Spark partitions on multiple GPUs is non-trivial
 - Can we coalesce partitions for reducing GPU calls?
- Managing large datasets from Java heap is not ideal
 - Data needs to be pinned, impacts GC,
 - Off-heap memory exploitation should become more usable
Questions?

GPU-Accelerated MLlib code to released in open source soon.