Automated Geophysical Feature Detection with Deep Learning

Chiyuan Zhang, Charlie Frogner and Tomaso Poggio, MIT.
Mauricio Araya-Polo, Jan Limbeck and Detlef Hohl, Shell International Exploration & Production Inc.

GPU Technology Conference 2016, April 4~7
Motivation
Motivation: Seismic Exploration

- Seismic exploration before drilling a well (very expensive)

Upstream. Seismic data are of crucial importance in the oil and gas industry. They are used in the exploration phase to find deep hydrocarbon accumulations, and during various phases of oil and gas field development planning to characterize the field before and during production.
Seismic Survey Workflow

Data acquisition, on/off shore.

Data processing: iterations could take multiple months with human experts.

Seismic traces
waveforms (time series) indexed by shot id and receiver id
Automated Geophysical Feature Detection

Step 1: Interpretation & Modeling

Seismic interpretation
Seismic acquisition and processing

Well log analysis and tie-in

Geologic interpretation modeling

Reservoir modeling

Step 2: Feedback loop & Iterations

Geophysical Features & Structures
Automated Geophysical Feature Detection

Early stages feature detection can help to steer the interpretation & modeling process.

Step 0: Feature Detection

Step 1: Interpretation & Modeling

Step 2: Feedback loop & Iterations

Geophysical Features & Structures

Seismic interpretation
Seismic acquisition and processing

Well log analysis and tie-in

Geologic interpretation modeling

Reservoir modeling
Automated Geophysical Feature Detection

From raw seismic traces, discover (classification) and locate (structured prediction) faults in the underground structure, before running migration/interpretation.
Methods

Motivation ↔ Methods ↔ Results
Machine Learning based Fault Detection

<table>
<thead>
<tr>
<th>Challenge</th>
<th>Solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>❶ Unlike simple classification, the output space is structured.</td>
<td>Wasserstein-loss based structured output learning.</td>
</tr>
<tr>
<td>❷ The mapping from traces to location of faults is a very complex nonlinear function.</td>
<td>Using deep neural networks for modeling.</td>
</tr>
<tr>
<td>❸ DNNs need a lot of training data.</td>
<td>Generate random synthesized training data (geological/geophysical model design + physical simulation + generative probabilistic modeling)</td>
</tr>
<tr>
<td>❹ Computational issue.</td>
<td>Julia + GPU computation with NVidia CUDA.</td>
</tr>
</tbody>
</table>
Learning with Wasserstein Loss

• The machine learning task
 • Classification & structured-output prediction
 • Wasserstein-loss [FZMAP15] to enforce smoothness in the output space

• Difference between object-detection like tasks in computer vision:
 • Input (time-series at different sensor location) and output (spatial map) live in different domain.
 • Time-location correspondence is unknown until full migration / interpretation is done.

Deep Learning based Fault Detection

Data Warehouse

Asynchronized Data IO

CPU
Stochastic Gradient Descent Solver Scheduling

MIT Julia

GPU Parallel Computing

NVidia cuDNN

Deep Neural Networks
Synthesizing Training Data

Synthesize Random Velocity Models

Physical Simulation of Wave Propagations

Simulate Wave-propagation & Collect Seismic Traces

Generate Ground-truth Fault Location
Deep Generative Models / 3D Modeling

Deep Learning on GPUs

hidden_layers = map(1:n_hidden_layer) do i
 InnerProductLayer(name="ip$i", output_dim=n_units_hidden,
 bottoms=[i == 1 ? :data : symbol("ip$(i-1)")],
 tops=[symbol("ip$i")],
 weight_cons=L2Cons(10),
end
pred_layer = InnerProductLayer(name="pred", output_dim=n_class,
 tops=[:pred], bottoms=[symbol("ip$n_hidden_layer")])
loss_layer = WassersteinLossLayer(bottoms=[:predsoft, :label])

backend = use_gpu ? GPUBackend() : CPUBackend()

method = SGD()
params = make_solver_parameters(method)
solver = Solver(method, params)
Summary of Challenges & Solutions

1. Wasserstein Loss
 Loss function with semantic smoothness

2. Deep Neural Networks
 Multi-layer dense layers

3. Data Warehouse

4. Computation Backends
 CPU, GPU (cuDNN)

Mocha.jl
Julia-based deep learning toolkit
Results

Motivation ↔ Methods ↔ Results
Results: Plots, single fault

Test case: 10k models, 510k traces, SGD 250k iterations. No noise, 1 fault, no salt body, **downsample 64**. DNN arch: 4 layers, 1024 neurons

Prediction accuracy:
• Area under Curve (AUC): **77%**
• Intersection over Union (IOU): **71%**
Results: Plots, multiple faults

Test case: 10k models, 510k traces, SGD 250k iterations. No noise, 2 faults, no salt body, **downsample 8**. DNN arch: 4 layer, 768 neurons

Prediction accuracy:
- Area under Curve (AUC): **86%**
- Intersection over Union (IOU): **75%**
Results: Plots, salt bodies

Test case: 10k models, 510k traces, SGD 250k iterations. No noise, 1 fault, Salt body, downsample 8. DNN arch: 2, 256

Prediction accuracy:
• Area under Curve (AUC): 96%
• Intersection over Union (IOU): 74%
Results: Computation Performance

- Performance plots, test case 10k models (80/20 split)

- **CPU vs GPU**: for the same reference architecture our GPU (1 chip of a K80) implementation is **38x** faster than the CPU one (1 Haswell E5-2680, 12 cores)

- **Multi-GPU.** We are collaborating with BitFusion (booth 731) to get this feature at Mocha level, so then transparent for our architectures
Results: Visualization

• more visualization, different cases, with & without salt body, different downsampling, etc.

• We can also show Wasserstein vs standard loss if we have the visualization results
Summary

• Deep-learning based system for automate geophysical feature detection from pre-migrated raw data.
• Generative model + physical simulation of wave propagation for synthesized training data.
• Wasserstein-loss for structured output learning problems.
• GPU-accelerated computation for fast modeling.