
April 4-7, 2016 | Silicon Valley

Christoph Kubisch, 4/7/2016

OPENGL BLUEPRINT RENDERING

2

MOTIVATION

Blueprints / drawings in CAD/graph viewer
applications

Documents can contain many LINES and LINE_STRIPS

Various line styles can be used (world-space widths,
stippling, joints, caps...)

Potential CPU bottlenecks

 Generating geometry for complex styles

 Collecting and rendering geometry

Model courtesy of PTC

3

MOTIVATION
Not targeting full vector graphics

NV_path_rendering covers high fidelity vector
graphics rendering

Per-pixel quadratic Bézier evaluation

Stencil & Cover pass to allow sophisticated
blending

Focus of this talk is rendering lines defined by
traditional vertices

Rendering data from OpenGL buffer objects

Single-pass, but does mean not safe for blending
(does self-overlap)

4

DEMO: BASIC DEMONSTRATION

5

LINE RASTERIZATION

Standard:
skewed rectangle
pixel snapped lines

Multisampling:
aligned rectangle
smooth lines

Both suffer from visible gaps and
overlaps on increasing line width

Representation

6

LINE RASTERIZATION

Stippling only in screenspace

Patterns must be expressable with
16 bits

LINES re-start pattern every
segment

LINE_STRIPS have continous
distance

Stippling

7

TECH

SHADER-DRIVEN LINES

Create TRIANGLES/QUADS
for line segments

Project extruded vertices
to keep line width
consistent

Clip and color in fragment
shader based on UV
coordinates and line
distance

Appearance
on screen

Geometry in world
coordinates

Shapes via fragment
shader discard

8

FLEXIBILITY TECH

SHADER-DRIVEN LINES

Create TRIANGLES for line
segments, project
extrusion to
world/screen, discard
fragments

Arbitrary stippling
patterns and line widths

Joint- and cap-styles

Different distance metrics

New coloring/animation
possibilities via shaders

Thin center line as effect

9

FLEXIBILITY TECH

SHADER-DRIVEN LINES

Create TRIANGLES for line
segments, project
extrusion to
world/screen, discard
fragments

Arbitrary stippling
patterns and line widths

Joint- and cap-styles

Different distance metrics

New coloring/animation
possibilities via shaders

CAVEATS

Cannot be as fast as basic
line rasterization

Not all data local at
rendering time (line strip
distances need extra
calculation)

Geometry still self-
overlaps

10

SHADER-DRIVEN LINES
Sample implementation/library

C interface library to render different
line primitives (LINES, LINE_STRIPS,
ARCS) provided as flexible framework
rather than black-box

Two different render-modes:
render as extruded triangles,
or one pixel wide lines

Uses NVIDIA and ARB OpenGL extensions
if available

11

SHADER-DRIVEN LINES
Sample implementation/library

Global style and stipple definitions

Stipple from arbitrary bit-pattern, or
float values

Style-

Definitions
Stipple-

Patterns
Style 0

Style 1

...

Pattern texture A

Pattern texture B

...

typedef struct NVLStyleInfo_s {
 NVLSpaceType projectionSpace;
 NVLJoinType join;
 NVLCapsType capsBegin;
 NVLCapsType capsEnd;
 float thickness;
 NVLStippleID stipplePattern;
 float stippleLength;
 float stippleOffsetBegin;
 float stippleOffsetEnd;
 NVLAnchorType stippleAnchor;
 NVLboolean stippleClamp;
} NVLStyleInfo;

 typedef enum NVLCapsType_e {
 NVL_CAPS_NONE,
 NVL_CAPS_ROUND,
 NVL_CAPS_BOX,
 NVL_NUM_CAPS,
 }NVLCapsType;

 typedef enum NVLJoinType_e {
 NVL_JOIN_NONE,
 NVL_JOIN_ROUND,
 NVL_JOIN_MITER,
 NVL_NUM_JOINS,
 }NVLJoinType;

 typedef enum NVLSpaceType_e {
 NVL_SPACE_SCREEN,
 NVL_SPACE_SCREENDIST3D,
 NVL_SPACE_CUSTOM,
 NVL_SPACE_CUSTOMDIST3D,
 NVL_NUM_SPACES,
 }NVLSpaceType;

 typedef enum NVLAnchorType_e {
 NVL_ANCHOR_BEGIN,
 NVL_ANCHOR_END,
 NVL_ANCHOR_BOTH,
 NVL_NUM_ANCHORS,
 }NVLAnchorType;

12

SHADER-DRIVEN LINES
Sample implementation/library

Uses GPU friendly collection mechanism:
Record many primitives then render
Optionally render sub-sections

Raw Primitives pass vertex data directly

Geometry Primitives reference existing
Vertex Buffers

Collections have usage-style flags:

 filled new per-frame

 recorded once, re-used many frames

Geometry/Raw Recording

Raw Primitives

Matrix Color

Vertex values

Style reference

Geometry Primitives VBO reference

13

SHADER-DRIVEN LINES
Quad extrusion

Faster geometry creation by just using Vertex-
Shader, avoiding extra Geometry-Shader stage

Render GL_QUADS (4 vertices each segment)

Use gl_VertexID to fetch line points

Use it for the offsets as well

Using custom vertex-fetch generally not
recommended, but useful for special
situations

VS GS

texelFetch(...gl_VertexID/4 + 0 or 1)

gl_VertexID % 4 + 0 gl_VertexID % 4 + 1

VertexBuffer

14

SHADER-DRIVEN LINES
Minimize Overdraw

No naive rectangles but adjacency in
LINE_STRIP is used to tighten the geometry

Reduces overdraw and minimizes potential
artifacts resulting from that

15

SHADER-DRIVEN LINES
Depth clamping

Joints and caps exceed original line
definition

Can cause depth-buffer artifacts

Prevent depth over-shooting by passing
closest depth to fragment shader and
clamp there

Can use ARB_conservative_depth or just
min/max to keep hardware z-cull active

#extension GL_ARB_conservative_depth : require
layout (depth_greater) out float gl_FragDepth;

in flat float closestPointDepth;
...

gl_FragDepth = max(gl_FragCoord.z,
 closestPointDepth);

16

DISTANCE COMPUTATION

LINE_STRIPS need dedicated calculation phase

Read vertices and calculate distances along the strip

Distances are fetched at render-time

V 0 V 1

V 2

V 3

4

VertexBuffer V

Strip Length 0 1

DistanceBuffer D 0 [0,1] [0,1]+[1,2] [0,1]+[1,2]+[2,3]

2 3
D 0 D 1

D 1 D 2

D 2 D 3

Sections drawn indepedently
Fetch vertices & distances

17

DISTANCE COMPUTATION
Shader Tips

One LINE_STRIP per thread can lead to
under utilization and non ideal memory
access due to divergence

SIMT hardware processes threads together
in lock-step, common instruction pointer
(masks out inactive threads).
NVIDIA: 1 warp = 32 threads

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

3 2 4 8

Thread: 0 ... 3

VertexBuffer

Strip Length

Distance
Accumulation

Loop

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

18

DISTANCE COMPUTATION
Shader Tips

Compute one LINE_STRIP at a time across
warp, gives nice memory fetch

NV_shader_thread_shuffle to access
neighbors and do prefix-sum calculation

Short strips may still under-utilize warp,
but are taking only one iteration

9

0 1 2

VertexBuffer

3

Strip Length

Distance
Accumulation

Loop

4

8

5 6 7

- - -

[0,1] [1,2] [2,3]

... Prefix-sum over distances ...

vec3 posA = getPosition (gl_ThreadInWarpNV + …)
vec3 posB = shuffleUpNV (posA, 1, gl_WarpSizeNV);
... Handle first thread point differently
float dist = distance(posA, posB);

[0,0]

Access neighbor
point via

shuffleUpNV and
compute distance

9 9 9

Thread: 0 ... 3

19

DISTANCE COMPUTATION
Batching & Latency hiding

Memory intensive operations prefer many
threads to hide latency of fetch

Would not „compute“ distance for a single
strip, but need many strips to work on

Use one warp per strip if total amount of
threads is low

Warp 0 Warp 1 Warp 2 Warp 3

Fetch

Wait

For

Memory

Compute

Effective

Utilization

Hardware switches activity
between entire warps

20

DISTANCE COMPUTATION
Batching & Latency hiding

Launch overhead of compute dispatch not
negligable for < 10 000 threads

Use glEnable(GL_RASTERIZER_DISCARD); and
Vertex-Shader to do compute work

No shared memory but warp data sharing as
seen before (ARB_shader_ballot or
NV_shader_thread_shuffle)

... “Compute” alternative for few threads
if (numThreads < FEW_THREADS){
 glUseProgram(vs);
 glEnable (GL_RASTERIZER_DISCARD);
 glDrawArrays(GL_POINTS, 0, numThreads);
 glDisable (GL_RASTERIZER_DISCARD);
}
else {
 glUseProgram(cs);
 numGroups = (numThreads+GroupSize-1)/GroupSize;
 glUniformi1 (0, numThreads);
 glDispatchCompute (numGroups, 1, 1);
}

... Shader
#if USE_COMPUTE
 layout (local_size_x=GROUP_SIZE) in;
 layout (location=0) uniform int numThreads;
 int threadID = int(gl_GlobalInvocationID.x);
#else
 int threadID = int(gl_VertexID);
#endif

21

SMOOTH TRANSITIONS
Anti-aliasing edges within shader

Fragment shader effects cause outlines of visible
shapes to be within geometry

MSAA will not add quality „within triangle“

Need to compute coverage accurately (sample-
shading) or approximate

Use of gl_SampleID (e.g. with
interpolateAtSample) automatically makes
shader run per-sample, „discard“ will affect
coverage mask properly

Cheaper: GL_SAMPLE_ALPHA_TO_COVERAGE or
clear bits in gl_SampleMask

No geometric edges  No MSAA benefit

in float stippleCoord;
...

sc = interpolateAtSample (stippleCoord, gl_SampleID);
stippleResult = computeStippling(sc);
if (stippleResult < 0) discard;

22

SMOOTH TRANSITIONS
Using Pixel Derivatives

Simple trick to get smooth transitions, also works
well on surface contour lines

Use a signed distance field, instead of step
function

Find if sample is close to transition (zero
crossing) via fwidth

Compute smooth weight if required

1

0

1

0

1

-1

fwidth
(signal)

smoothing
zone
around zero

0

signal
within
smoothing
zone

float weight = signal < 0 ? -1 : 1;
float zone = fwidth (signal) * 0.5;
if (abs (signal) < zone){
 weight = signal / zone;
}

23

RECORDING RAW DATA
Using persistent mapped buffers

When primitives & vertices are not re-used, but
regenerated by CPU, we want a fast way to get
them to GPU

Use ARB_buffer_storage/OpenGL 4.3 to have
buffers in CPU memory for fast copying

Need fences to avoid overwriting data still used
by GPU, 3 frames typically enough to avoid
synchronization

CPU memory access „okayish“ if data only read
rarely (once for stipple-compute, once for
render)

Buffers A

Buffers C

Buffers B

Buffers A

Buffers B

Buffers A

Buffers C

Buffers B

Buffers A

Buffers B

CPU filling GPU rendering

Timeline

Signal Frame Fence

Wait Fence

Cycle sets
of buffers

each
frame

24

RENDERING ARCS

Not trivial to compute distance along an arbitrary
projected arc/circle

Approximate circle as line strip

Allocate maximum subdivision

Compute adaptively based on screen-space size
(or frustum cull)

Rendering only needs to fetch distance values,
can still compute position on the fly

25

OUTLOOK & CONCLUSION

Preserving all primitive order not optimal for
performance, ideally application can operate in layers.

Code your own special primitives for annotations
(arrows...)

Use of shaders can increase visual quality beyond
„fancy surface shading“

Do not need actual geometry for everything (distance
fields are great)

GPU programmable enough to move more effects from
CPU to GPU

April 4-7, 2016 | Silicon Valley

THANK YOU

JOIN THE NVIDIA DEVELOPER PROGRAM AT developer.nvidia.com/join

ckubisch@nvidia.com @pixeljetstream

https://developer.nvidia.com/join
mailto:ckubisch@nvidia.com

