

GPU based DEM for bulk particle transport simulations.

Nicolin Govender

Outline

- Introduction
- DEM
- Computational simulation
- Collision detection
- GPU Implementation
- Experimental validation
- Conclusion

Introduction

<u>Forces</u> Color (Quarks)

Strong (residual)

10⁻¹¹ cm Nuclei

10⁻¹³ cm

Proton

10⁻⁸ cm

Atom

1 cm

Grain

EM, Weak

9

10⁻⁷ cm Gravity, EM* Molecule

Gravity

100 cm Rocks The physical size of the particle does not affect interaction

Interaction affected by physical contact

Discrete Element Method

- Most popular and successful approach first described by "CUNDALL: A discrete numerical model for granular assemblies. Geotechnique 29, (1979), 47–65."
- Similar force ranges and particle sizes
- Motion of particle depend on the net sum of forces per time step
- Binary contact is assumed to resolve contact forces
- Explicit integration
- Embarrassingly parallel
- Particles are commonly treated as spheres

If only they had simulated...

Some of them did...

(1) It is meant to be bulk material simulation!

Large is relative.

• "The DEM simulations in this study required **over a month** of time on **90 processors**, since the contact models are stiff and a small timestep is required."

(2) Shape, no wonder the mars rover got stuck.

DEM limitation

• Particle numbers

DEM challenges for the geomechanic applications is number of elements

Numbers of particles vs time in DEM papers (CPU)

Clock frequency vs time

Size of transistor vs time

Clock Frequency vs. Time Intel IBM Sun AMD DEC Other AMD DEC Other Intel IBM Sun Intel IBM

Particulate DEM, A geomechanics Perspectives, O'Sullivan 2011

GPU approach needed if we want to increase particles and model the industrial-scale

Aim

- Provide a GPU based framework that can be used to solve bulk flow problems encountered in engineering industry.
- Run on typical workstations using consumer hardware while being able to efficiently utilize multi GPU configurations.
- Needs to provide physical quantities that are relevant to aid in the design process.
- Needs to be modular in terms of:
 - Collision detection.
 - Collision resolution (physics).
- Allow for accurate particle shape representation when needed.
- Allow for large number of particles to be simulated.

Because shape and speed matter!

Collision detection

- Current methods use triangulation/particles, which require thousands of checks to determine collision.
- We employ a ray based approach, which does not require a mesh.

$$d = \mathbf{n} \cdot (\mathbf{v} - \mathbf{c})$$

• For higher order surfaces we use analytical expressions.

$$d = f(\mathbf{v})$$

- Mathematically only a change in normal implies a new surface.
 Surface.
 Vertex not on surface but will be reported as a collision.
 Normal is out of the page (a)
- Thus surface triangulation is not needed for collision detection, a point and normal is sufficient.
- Justification from DEM community is it is needed for calculating wear, stress/pressure, tallies etc.
- However it is actually only a "virtual" mesh that is needed. Furthermore since they are not intrinsic properties they can be processed in parallel/post with the DEM step.

GPU Data Storage

- SOA approach: 2.6 GB per 10 million particles, unpadded since memory is a premium.
- Spatial binning grid requires 8 bytes per cell (8 GB for a 10m³ area).
 - Largest particle dictates cell size.
 - ~-15% 1:2 ratio .
 - Smaller ratio than this requires parameter change so cannot compare.
 - Can have a coarser grid to decrease memory usage but performance drops by 2.8X and 15X for a factor of 2 and 4 cell-size reduction.
- World Geometry is split into: macro (cylinder,cone), surface (internal concave) and volume (convex) objects. Stored in constant memory*.

- Objects can rotate and translate imparting the resultant dynamics on particles.
- All objects can deform rigidly in real-time.

GPU Computation

- We split world collision detection into (Kernel_Planar) and (Kernel_Marco) to ensure there is no divergence. We launch kernels per world object in multiple streams.
- NN search using spatial binning, requires the cells to be set using memset after each iteration. This is expensive and also scaled with the domain not particles.
- However, we can run the opposite of the binning kernel, to set bin values to zero. 10X faster than memset and scales with number of particles/distn.
- We only grid the region where particles are contained in for silo/flow problems where the domain moves. (First and last particle hash gives the extent of the region).
- Particle, World and Volume CD are in different streams to allow concurrent execution
- On a single GPU we can do 32 million particles using 8.7GB memory 0.2 seconds per step. 35 minutes for 1 second simulation time. Cundall No = 1.6E8
- Multi-GPU: Brute-force sorting on GPU 0, then send N/k particle to each GPU.+ buffer. Only useful when domain does not change much, eg filling, mass flow . Waiting for Pascal...

GPU Optimizations

- For the past 3 years chose "sensible" algorithms for the GPU.
 - Code is many of times faster than CPU codes, and about 3X faster than comparable GPU codes.
 - As always predicting the real world is the essential proof, pushing to 10's of millions of particles started taking time, about 3 days for an industry relevant simulation.
 - Although it is a new performance level for DEM, I didn't like waiting.
 - Finally this year after extensive validation (documented in journal publications) that shows good agreement to experiment, new ideas kept on the back burner were implemented.
 - Short story in two weeks got a 4X speed-up ! That is more than any full algorithmic changes can yield...

What had to change from typical "particle simulations" .

- Gaming approximates contact duration crudely by impulse calculations $\mathbf{v}^{new} = \mathbf{v}^n \pm \mathbf{j}/m, \ \omega^{new} = \omega^n \pm \mathbf{I}^{-1} (\mathbf{r} \times \mathbf{j})$
- Physics simulations resolves the contact duration from constitutive contact models $\mathbf{F}_{N}^{elastic} = (K_r \delta^{\frac{3}{2}})\mathbf{n}$ $\mathbf{F}_{N}^{diss} = -K_D \delta^{\gamma} \mathbf{vrel}_n$
- Contact is resolved in a single time-step!
- Contact is resolved over multiple steps!

- Gaming is qualitative and estimates visual acceptable behavior
- Physics simulations are quantitative and estimate physical quantities such as energy, impact and shear and normal forces

DEM vs Experiment Spherical Particle Flow

DEM vs Experiment Polyhedra Particle Flow

(b)

Flow rates DEM vs Experiment

Ö

Flow rates Spheres vs Polyhedra

Polyhedra arching temporarily causes stop start flow.

(b)

Polyhedra (corn) stable arcl causing flow to stop.

(c)

Spherical particle flow at the industrial scale

Cross-sectional views of **hopper** flow patterns at several simulation time (0, 10, 20 and 30s) for silo 2 (16777216 particles, 20 mm diameter)

Why do we need more particles?

Latest LIGGGHTS benchmark http://www.cfdem.com/media/DEM/benchmarks/LIGGGHTS_Benchmarks.pdf

10 Million Particles, **60 Cores**: 1 second = **46 hours**

Cost \$ 16000 For just the CPUS! *(Price at launch in 2013)= \$ 96000

GPU 242X Faster, 27X Cheaper

Blaze-DEM GPU benchmark 10 Million Particles, 1 GTX 980 : 1 second = 0.19 hours Cost \$ 600

Because the future is now!

Thank you for your time.

[1] Development of a convex polyhedral discrete element simulation framework for NVIDIA Kepler based GPUs, Journal of Computational and Applied Mathematics 270 (2014) 386–400

[2] Collision detection of convex polyhedra on the NVIDIA GPU architecture for the discrete element method, Applied Mathematics and Computation 2014

[3] Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework, Minerals Engineering 79 (2015) 152–168.

[4] Validation of the gpu based blaze-dem framework for hopper discharge, iv international conference on particle-based methods – fundamentals and applications PARTICLES 2015

[5] BLAZE-DEM GPU opensource framework, SoftwareX (2016).

chnolog

cience and Technology EPUBLIC OF SOUTH AFRICA

