Deep Learning in Microsoft with CNTK

Alexey Kamenev
Microsoft Research
Deep Learning in the company

- Bing
 - Cortana
 - Ads
 - Relevance
 - Multimedia
 - ...
- Skype
- HoloLens
- Research
 - Speech, image, text
Figure 1. Historical progress of speech recognition word error rate on more and more difficult tasks. The latest system for the switchboard task is marked with the green dot.

Human Error Rate 4%
Microsoft had all 5 entries being the 1-st places this year: ImageNet classification, ImageNet localization, ImageNet detection, COCO detection, and COCO segmentation.
CNTK Overview

- A deep learning tool that balances
 - **Efficiency**: Can train production systems as fast as possible
 - **Performance**: Can achieve state-of-the-art performance on benchmark tasks and production systems
 - **Flexibility**: Can support various tasks such as speech, image, and text, and can try out new ideas quickly

- **Inspiration**: Legos
 - Each brick is very simple and performs a specific function
 - Create arbitrary objects by combining many bricks

- **CNTK enables the creation of existing and novel models by combining simple functions in arbitrary ways.**

- **Historical facts:**
 - Created by Microsoft Speech researchers (Dong Yu et al.) 4 years ago
 - Was quickly extended to handle other workloads (image/text)
 - Open-sourced (CodePlex) in early 2015
 - Moved to GitHub in Jan 2016
Functionality

• Supports
 • CPU and GPU with a focus on GPU Cluster
 • GPU (CUDA): uses NVIDIA libraries, including cuDNN v5.
 • Windows and Linux
 • automatic numerical differentiation
 • efficient static and recurrent network training through batching
 • data parallelization within and across machines with 1-bit quantized SGD
 • memory sharing during execution planning

• Modularized: separation of
 • computational networks
 • execution engine
 • learning algorithms
 • model description
 • data readers

• Models can be described and modified with
 • Network definition language (NDL) and model editing language (MEL)
 • Python, C++ and C# (in progress)
CNTK Architecture

- **CN Description**
- **Features & Labels**
- **Builder Lambda**
- **IDataReader**
- **ILearner**
- **CPU/GPU**
- **IExecutionEngine**

Use -> **Build**

Load -> **Get data**

Task-specific reader

Evaluate Compute Gradient

SGD, AdaGrad, etc.
Main Operations

• Train a model with the `train` command
• Evaluate a model with the `eval` command
• Edit models (e.g., add nodes, remove nodes, change the flag of a node) with the `edit` command
• Write outputs of one or more nodes in the model to files with the `write` command

• Finer operation can be controlled through script languages (beta)
A generalization of machine learning models that can be described as a series of computational steps.

- E.g., DNN, CNN, RNN, LSTM, DSSM, Log-linear model

Representation:

- A list of computational nodes denoted as
 \[n = \{ \text{node name} : \text{operation name} \} \]
- The parent-children relationship describing the operands
 \[\{ n : c_1, \cdots, c_{K_n} \} \]
 - \(K_n \) is the number of children of node \(n \). For leaf nodes \(K_n = 0 \).
 - Order of the children matters: e.g., XY is different from YX
- Given the inputs (operands) the value of the node can be computed.

Can flexibly describe deep learning models.

- Adopted by many other popular tools as well
Example: One Hidden Layer NN

- **Output Layer**:
 - O (Softmax)
 - $P^{(2)}$
 - $W^{(2)}$, $b^{(2)}$

- **Hidden Layer**:
 - $S^{(1)}$ (Sigmoid)
 - $P^{(1)}$
 - $W^{(1)}$, $b^{(1)}$
 - X

- **Input Layer**:
 - $W^{(1)}$, $B^{(1)}$
 - $T^{(1)}$: Times
 - $S^{(1)}$: Sigmoid

- **Output Layer**:
 - O: Softmax
 - $P^{(2)}$: Plus
 - $T^{(2)}$: Times
 - $W^{(2)}$: Weight
 - $B^{(2)}$: Weight
 - $S^{(1)}$: Sigmoid
 - $P^{(1)}$: Plus
 - $T^{(1)}$: Times
 - $W^{(1)}$: Weight
 - X: Input
Example: CN with Multiple Inputs
Example: CN with Recurrence
Usage Example (with Config File)

• `cntk configFile=yourConfigFile DeviceNumber=1`

```plaintext
command=Train:Test

Train=[
    action = "train"
    deviceId=$DeviceNumber$
    modelPath="$your_model_path$"

    NDLNetworkBuilder=[…]
    SGD=[…]
    reader=[…]
]
```

• You can also use C++, Python and C# (work in progress) to directly instantiate related objects.

String Replacement
CPU: CPU
GPU: >=0 or auto
Network Definition with NDL (LSTM)

\[i_t = \sigma \left(W^{(xi)} x_t + W^{(hi)} h_{t-1} + W^{(ci)} c_{t-1} + b^{(i)} \right) \]
\[f_t = \sigma \left(W^{(xf)} x_t + W^{(hf)} h_{t-1} + W^{(cf)} c_{t-1} + b^{(f)} \right) \]
\[c_t = f_t \cdot c_{t-1} + i_t \cdot \tanh \left(W^{(xc)} x_t + W^{(hc)} h_{t-1} + b^{(c)} \right) \]
\[o_t = \sigma \left(W^{(xo)} x_t + W^{(ho)} h_{t-1} + W^{(co)} c_t + b^{(o)} \right) \]
\[h_t = o_t \cdot \tanh (c_t), \]
Network Definition with NDL

LSTMComponent(inputDim, outputDim, inputVal) = [
 Wxo = Parameter(outputDim, inputDim)
 Wxi = Parameter(outputDim, inputDim)
 Wxf = Parameter(outputDim, inputDim)
 Wxc = Parameter(outputDim, inputDim)
 bo = Parameter(outputDim, 1, init=fixedvalue, value=-1.0)
 bc = Parameter(outputDim, 1, init=fixedvalue, value=0.0)
 bi = Parameter(outputDim, 1, init=fixedvalue, value=-1.0)
 bf = Parameter(outputDim, 1, init=fixedvalue, value=-1.0)
 Whi = Parameter(outputDim, outputDim)
 Wci = Parameter(outputDim, 1)
 Whf = Parameter(outputDim, outputDim)
 Wcf = Parameter(outputDim, 1)
 Who = Parameter(outputDim, outputDim)
 Wco = Parameter(outputDim, 1)
 Whc = Parameter(outputDim, outputDim)
]

Wrapped as a macro and can be reused

parameters
Network Definition with NDL

delayH = PastValue(outputDim, output, timeStep=1)
delayC = PastValue(outputDim, ct, timeStep=1)

WxiInput = Times(Wxi, inputVal)
WhidelayHI = Times(Whi, delayH)
WcidedelayCI = DiagTimes(Wci, delayC)

\[i_t = \sigma \left(W^{(xi)} x_t + W^{(hi)} h_{t-1} + W^{(ci)} c_{t-1} + b^{(i)} \right) \]

it = Sigmoid(Plus(Plus(WxiInput, bi), WhidelayHI), WcidedelayCI))

WhfdelayHF = Times(Whf, delayH)
WcfDelayCF = DiagTimes(Wcf, delayC)

WxfInput = Times(Wxf, inputVal)

\[f_t = \sigma \left(W^{(xf)} x_t + W^{(hf)} h_{t-1} + W^{(cf)} c_{t-1} + b^{(f)} \right) \]

ft = Sigmoid(Plus(Plus(WxfInput, bf), WhfdelayHF), WcfdelayCF))
Network Definition with NDL

• Convolutions (2D and ND)

• Simple Syntax for 2D convolutions:

```plaintext
ConvReLULayer(inp, outMap, inWCount, kW, kH, hStride, vStride, wScale, bValue)
[
    W = LearnableParameter(outMap, inWCount, init = Gaussian, initValueScale = wScale)
    b = ImageParameter(1, 1, outMap, init = fixedValue, value = bValue)
    c = Convolution(W, inp, kW, kH, outMap, hStride, vStride, zeroPadding = true)
    p = Plus(c, b)
    y = RectifiedLinear(p)
]

# conv2
kW2 = 5
kH2 = 5
map2 = 32
hStride2 = 1
vStride2 = 1
conv2 = ConvReLULayer(pool1, map2, 800, kW2, kH2, hStride2, vStride2, conv2WScale, conv2BValue)
```

Reusable macro

Macro usage
Network Definition with NDL

• Powerful syntax for ND convolutions:

```
Convolution(w, input,
    {kernel dimensions},
    mapCount = {map dimensions},
    stride = {stride dimensions},
    sharing = {sharing},
    autoPadding = {padding (boolean)},
    lowerPad = {lower padding (int)},
    upperPad = {upper padding (int)})
```

```
ConvLocalReLULayer(inp, outMap, outWCount, inMap, inWCount, kW, kH, hStride, vStride, wScale, bValue)
[
    W = LearnableParameter(outWCount, inWCount, init = Gaussian, initValueScale = wScale)
    b = ImageParameter(1, 1, outMap, init = fixedValue, value = bValue)
    c = Convolution(W, inp,
        {kW, kH, inMap},
        mapCount = outMap,
        stride = {hStride, vStride, inMap},
        sharing = {false, false, false})
    p = Plus(c, b)
    y = RectifiedLinear(p)
]
```

Sharing is disabled – enables locally connected convolutions.
Network Definition with NDL

• Same engine and syntax for pooling:

```python
Pooling(input, poolKind
    {kernel dimensions},
    stride = {stride dimensions},
    autoPadding = {padding (boolean)},
    lowerPad = {lower padding (int)},
    upperPad = {upper padding (int)})

MaxoutLayer(inp, kW, kH, kC, hStride, vStride, cStride)
[
    c = Pooling(inp, “max”,
                {kW, kH, kC},
                stride = {hStride, vStride, cStride})
]
```

Pool and stride in any way you like
Model Editing with MEL

Insert a new layer (e.g., for discriminative pretraining)

CE.S = Softmax(CE.P)
CE.P = Plus(CE.T, b0)
CE.T = Times(W0, L1.S)

L1.S = Sigmoid(CE.P)
L1.P = Plus(L1.T, b1)
L1.T = Times(W1, X)

MODIFY

L2.S = Sigmoid(L2.P)
L2.P = Plus(L2.T, b0)
L2.T = Times(W2, L1.S)

CREATE

X

X
Computation: Without Loops

• Given the root node, the computation order can be determined by a depth-first traverse of the directed acyclic graph (DAG).
• Only need to run it once and cache the order
• Can easily parallelize on the whole minibatch to speed up computation
With Loops (Recurrent Connections)

• Very important in many interesting models

\[v_{j}(\lambda, y) = y_{(j-\lambda)} \]

- Naive solution:
 - Unroll whole graph over time
 - Compute sample by sample

Implemented with Delay (PastValue or FutureValue) node
With Loops (Recurrent Connections)

- We developed a smart algorithm to analyze the computational network so that we can
 - Find loops in arbitrary computational networks
 - Do whole minibatch computation on everything except nodes inside loops
 - Group multiple sequences with variable lengths (better convergence property than tools that only support batching of same length sequences)

Users just describe computation steps. Speed up is automatic
Data Parallelization: 1-Bit Quantized SGD

- **Bottleneck** for distributed learning: **Communication** cost
- Solution: reduce the amount of data need to be communicated by **quantizing gradients to just 1 bit**
 - It’s a lot safer to quantize gradients than model parameters and outputs (gradients are small and noisy anyway)
 - Carry quantization residue to next minibatch (important)
 - Further hide communication with double-buffering: send one while processing the other
 - Use an $O(1)$ communication scheduler to sync gradients
 - Increase minibatch size to fully utilize each GPU as early as possible

Transferred Gradient (bits/value), smaller is better

1-Bit Stochastic Gradient Descent and its Application to Data-Parallel Distributed Training of Speech DNNs, InterSpeech 2014, F. Seide, H. Fu, J. Droppo, G. Li, D. Yu
O(1) Aggregation
CNTK Computational Performance

![Speed Comparison Chart](chart.png)

- **Achieved with 1-bit gradient quantization algorithm**
- **[CATEGORY NAME] only supports 1 GPU**

Speed Comparison (Frames/Second, The Higher the Better)

- **CNTK**
- **Theano**
- **TensorFlow**
- **Torch 7**
- **Caffe**

Legend:
- 1 GPU
- 1 x 4 GPUs
- 2 x 4 GPUs (8 GPUs)
Memory Sharing

• Use same memory across minibatches: don’t destroy and reallocate memory at each minibatch.

• Share memory across computation nodes when possible
 • Analyze the execution plan and release the memory to a pool to be reused by other nodes or computation if possible
 • E.g., when a node finished computing all its children’s gradients, the matrices owned by that node can all be released.
 • Can reduce memory by 1/3 to 1/2 for training in most cases
 • Can reduce memory even more if gradients are not needed.
CNTK 2.0

• CNTK as a library
 • C++, Python and .NET bindings
 • Allows creation of new nodes as well as new network types
• Sequence-to-Sequence with attention models
• Blockwise Model Update Filtering (BMUF) (1)
• Reinforcement Learning
• Performance improvements

Summary

• CNTK is a powerful tool that supports CPU/GPU and runs under Windows/Linux

• CNTK is extensible with the low-coupling modular design: adding new readers and new computation nodes is easy with a new reader design

• Network definition language, macros, and model editing language (as well as Python and C++ bindings in the future) makes network design and modification easy

• Compared to other tools CNTK has a great balance between efficiency, performance, and flexibility
Azure GPU Lab (Project Philly) - Coming

• High performance deep learning platform on Azure
• Scalable to hundreds of NVIDIA GPUs
• Rapid, no-hassle, deep learning experimentation
• Larger models and training data sets
• Multitenant
• Fault tolerant
• Open source friendly
• CNTK optimized
• 3rd party accessible (coming)
 • The project has been running internally for 6+ months with great success
Project Philly Architecture

Web Portal
- Node0
 - GPU0,1,2,3
 - CNTK
 - JobA User0
- Node1
 - GPU0,1,2,3
 - CNTK
 - JobA User0
- Node2
 - GPU1
 - CNTK
 - JobB User1
- Node2
 - GPU2
 - CNTK
 - JobC User2

REST API
- Docker (Ubuntu Distribution)

Samba
- YARN (Job/Container Scheduling, Resource Management)

FUSE
- HDFS (Distributed Storage)

CoreOS
Project Philly Job Monitoring
Project Philly Cluster Monitoring

Cluster Thumbnails on gcr-cluster of gpuutil in last hour

load info cpu network infiniband memory disk gpuutil gputemp
Additional Resources

• CNTK:
 • https://github.com/Microsoft/CNTK
 • Contains all the source code and example setups
 • You may understand better how CNTK works by reading the source code
 • New features are added constantly

• How to contact:
 • CNTK team: ask a question on CNTK GitHub!
 • Alexey:
 • Email: alexey.kamenev@microsoft.com
 • LinkedIn: https://www.linkedin.com/in/alexeykamenev