A Dictionary Learning approach in GPU for Image Denoising Lizeth Joseline Fuentes Pérez Luciano Arnaldo Romero Calla Anselmo Antunes Montenegro

Abstract

- Many image processing problems require image denoising as a preprocessing step. We address the problem of removing white Gaussian noise in images via dictionary learning, which is a technique that has been proved to better fit a signal than fixed dictionary approaches.
- Learning an overcomplete dictionary for sparse representation is a problem that involves a high computational cost. In this poster, we present an efficient parallel algorithm on GPU to reduce the whole processing time of image denoising algorithm via dictionary learning.

Introduction

Nowadays, sparse representation of signals has attracted considerable interest. Basically, sparse representation is based on the idea that a signal can be decomposed as a sparse linear combination of atoms, which are understood in a base called dictionary [1]. In image processing, dictionary learning is a successful technique with several applications such as denoising, inpainting, demosaicing and comprehensive sensing [2].

Dictionary learning is an NP-hard problem because the complexity of exhaustive search to solve the sparseness is exponential [3]. Hence, the exact computation of a sparse representation is not deemed a feasible approach. In the literature, several algorithms approximate the solution quite well; for instance greedy algorithms such as Orthogonal Matching Pursuit (OMP), gradient descent algorithms and the LASSO [4]. The K-SVD algorithm is usually used to train an overcomplete dictionary [5].

We propose a GPU Dictionary Learning algorithm based on K-SVD and OMP, to deal with the high computational complexity that implies solving largescale optimization problems.

Formally, the dictionary learning problem can be formulated as:

large, n is the dimension of each patch, $D \in \mathbb{R}^{n \times m}$. m < M. K-SVD algorithm in GPU is used to train the dictionary and is composed by two main stages, K represents the number of iterations of the algorithm. **Sparse coding stage**, we create an OMP kernel for the sparse representation of the dictionary. OMP solves the following optimization problem:

Institute of Computing - Federal Fluminense University

GPU Dictionary Learning algorithm

 $\min_{\alpha \in \mathbb{R}^m} ||x - D\alpha||_2^2 \ s.t. \ ||\alpha||_0 \le L$

where x is a set of training signals $x_{i=1}^M \in \mathbb{R}^n$, M is

 $min_{\alpha \in \mathbb{R}^p} ||x - D\alpha||_2^2 \ s.t. \ ||\alpha||_0 \le L$ (1)K-SVD Dictionary update stage, basically update each dictionary atom.

We create the following kernels:

- atom.
- update the dictionary.

Experiments and Result

- linear algebra algorithms.
- patches.

Methodology

GPU TECHNOLOGY CONFERENCE

Compute the residual matrix fixing one dictionary

Compute single value decomposition (SVD) to

• Tests were performed on an Intel (R) Core (TM) i7-3770 CPU @ 3.40GHz processor with 24.5 GiB RAM; NVIDIA® TeslaTM K40C GPU Computing Accelerator - 12GB GDDR5 - 2880 CUDA Cores. We used Cusolver of CUDA 7.0 for computing

• The parameters used in the experiments are: threads number NT is 256, blocks number is (x + NT - 1)/NT, where x is the number of

Conclusions

In the experiments we compared our GPU implementation with a Matlab CPU implemenation with optimized linear algebra operations. The results have shown that we achieved a approximate speed up of $40 \times$. Note that this is based on the total time of image denoising procedure, which is strongly dominated by the time of dictionary training using the K-SVD algorithm.

References

- [1] R. Rubinstein, T. Faktor, and M. Elad. 2012 IEEE International Conference on, pages 5405–5408, March 2012.
- [2] Jian Zhang, Debin Zhao, and Wen Gao. Image Processing, IEEE Transactions on, 23(8):3336–3351, Aug 2014.
- [3] Michael Elad. to Applications in Signal and Image Processing. 2010.
- [4] Joel A. Tropp, Anna C. Gilbert, and Martin J. Strauss. Greedy pursuit. Signal Process., 86(3):572–588, March 2006.
- [5] M. Aharon, M. Elad, and A. Bruckstein. Svdd: An algorithm for designing overcomplete dictionaries for sparse representation. Trans. Sig. Proc., 54(11):4311-4322, November 2006.

Contact Information

- Lizeth: lfuentes@ic.uff.br
- Luciano: lromero@ic.uff.br
- Anselmo: anselmo@ic.uff.br

Instituto de

K-svd dictionary-learning for the analysis sparse model. In Acoustics, Speech and Signal Processing (ICASSP),

Group-based sparse representation for image restoration.

Sparse and Redundant Representations: From Theory Springer Publishing Company, Incorporated, 1st edition,

Algorithms for simultaneous sparse approximation: Part i:

