
High Performance Vulkan

Lessons Learned from Source 2

John McDonald

Sections

 Introduction and Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Disclaimer

 Largely based on Dan Ginsburg’s Siggraph 2015

Vulkan talk, but updated for 1.0.

 3385 changes to Vulkan since that talk.

 So hopefully not a rehash even if you were there

 Slides may be buggy!

 Guidance based on Desktop GPUs (AMD, Intel,

NVIDIA)

 Everything should work on mobile GPUs, but may not be

optimal performance

Goals

 Thorough understanding of Vulkan concepts

 Concrete examples to follow for common resource

updates

Goals

 Thorough understanding of Vulkan concepts

 Concrete examples to follow for common resource

updates

 Avoid repeating our mistakes

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Source 2 Overview

 OpenGL, Direct3D 9, Direct3D 11, Vulkan

 Windows, Linux, Mac

 Dota 2 Reborn

Source 2 Rendering

 Direct3D 11-like Rendersystem abstraction

 Multithreaded

 D3D9/GL: software command buffers

 D3D11: deferred contexts

 Single submission thread

Source 2 Rendering (GL)

Source 2 Rendering (GL)

Source 2 Rendering (GL)

Source 2 Vulkan Port

 Started with GL and D3D11 renderer

 D3D11 deferred contexts mapped well to Vulkan command

buffers

 Leveraged GLSL shader conversion already in GL layer

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

General Guidance

 Setting up the Validation layer should be part of day 1

tasks.

 Validation should be enabled all through development

 Without Validation, Vulkan will not report errors back to

you, most likely will simply crash if given invalid parameters

/ commands.

 Spend a little time investing in app thread debugging

tools

 Single Threaded Job mode

 Heap Validation tools (malloc/debug)

 CPU-GPU sync point detection

 Invest in tools that can visualize threads well

General Guidance - Threading

 Threads should be as independent as possible

 Any cross talk between threads significantly reduces

benefit from multithreading

General Guidance - Threading

 Threads should be as independent as possible

 Any cross talk between threads significantly reduces

benefit from multithreading

Bad threading is worse

than no threading

General Guidance Caveats

 However, per-thread resources lead to memory bloat

 Over time, all threads consume the same large memory

footprint

 Conceptually a form of internal fragmentation

 Can be difficult to stay on top of

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal Fragmentation Consumption

 Ideal

 Total = Sum(Per Thread Memory)

 Worst Case

 Total = Max(Per Thread Memory) * Num Threads

 Possible Solution Later

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Command Buffer Core Concepts

 Conceptually similar to D3D11 Deferred Context

 Inherit no* state from other command buffers

 VkCommandBuffers are central to the split between

specification of work and scheduling of work.

 Between vkBeginCommandBuffer and

vkEndCommandBuffer, a command buffer is said to be

recording. This is the specification of work.

 Once a Command Buffer has been Ended, it can be
scheduled for execution with vkQueueSubmit.

Command Buffer Core Concepts

 Conceptually similar to D3D11 Deferred Context

 Inherit no* state from other command buffers

 VkCommandBuffers are central to the split between

specification of work and scheduling of work.

 Between vkBeginCommandBuffer and

vkEndCommandBuffer, a command buffer is said to be

recording. This is the specification of work.

 Once a Command Buffer has been Ended, it can be
scheduled for execution with vkQueueSubmit.

* Except Renderpass information between primary->secondary command buffers, which are beyond the scope of this presentation.

Command Buffer Core Concepts

 A VkCommandBuffer is allocated from a VkCommandPool

via a call to vkAllocateCommandBuffers

 VkCommandPools, like other pools, allow for lock-free

allocation.

 Each VkCommandBuffer—and VkCommandPool—is

“externally synchronized.” This means the application

promises not to act on the same Command Buffer or

Command Pool from two threads simultaneously.

Command Buffers in Source 2

 Used where D3D11 deferred contexts were used

 One VkCommandBuffer per thread per render target

 Except full screen passes—one command buffer only

 Single thread performs submission to queue

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf

CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf

CmdBuf

CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf

CmdBuf

CmdBuf CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool
Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf

CmdBuf CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 All work passed to Submit thread via ThreadSafe

Queue. Ordering is effectively arbitrary.

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Submit

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 All work passed to Submit thread via ThreadSafe

Queue. Ordering is effectively arbitrary.

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Submit

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 All work passed to Submit thread via ThreadSafe

Queue. Ordering is effectively arbitrary.

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Submit

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

At least one frame

Command Buffer Allocation and Reuse

 Recycle VkCommandBuffer back to the thread they

came from for next time.

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Submit

Thread0

Thread1

Thread2

Submit

Main Check Fences

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Performance

 Submit in batches

 vkQueueSubmit flushes—so generally 1-2 per frame max.

 Faster to group submissions together

 Minimize number of command buffers

 We are still investigating how to decrease our count

 Use VK_CMD_BUFFER_OPTIMIZE_ONE_TIME_SUBMIT_BIT

 Optimize for one-time submission

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Pipeline Core Concepts

 All Pipeline state data is encapsulated in a reusable
VkPipeline object.

 Which Shaders are set and active

 Stencil Test

 Scissor Mode

 Blend State

 etc

 A VkPipeline is created by calling

vkCreateGraphicsPipelines or

vkCreateComputePipelines.

 Creation of these may be very expensive, the cost may be
alleviated by using VkPipelineCache objects.

 Once created a VkPipeline is immutable, but can be

used from many threads at once.

VkPipelineCache

 VkPipelineCache is ARB_program_binary for

Vulkan.

 Load from disk

 Give to Vulkan

 Makes VkPipeline creation magically faster (~20x

faster)

 Before shutdown

 Ask size

 Get bytes from Vulkan

 Write to disk

 Dota 2 Reborn’s VkPipelineCache is ~4 MB on disk.

Efficient Pipeline Construction

 Problem: Need efficient access to VkPipelines from

many threads at once

 Bonus Problem: VkPipelines may be large, don’t

want to multiply cost by N threads.

 Solution: Two Tiered Cache

 Two Pipeline Maps

 1 Read Only Pipeline Map (Current)

 1 Read/Write Pipeline Map (Pending)

Pipeline State Creation Visualized

Pipeline State

Hash

 Application is issuing D3D11-like rendering

commands…

Pipeline State Creation Visualized

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

Pipeline State

Hash

Lookup (Lock Free)

 At draw time, state is hashed. Current cache is checked
for existing VkPipeline.

Pipeline State Creation Visualized

Pipeline State

Hash

Lookup (mutexed)

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

 If doesn’t exist in Current, lock is grabbed and Pending

cache is checked.

Pipeline State Creation Visualized

Pipeline State

Hash
Create Pipe

Pipe3

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

(mutexed)

 Still can’t find it—create now.

 Push into Pending Pipe Map, and return to caller

Pipeline State Creation Visualized

Pipeline State

Hash
Create Pipe

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

(mutexed)

Pipe3

Pipe3

Pipeline State Creation Visualized

End of

Frame

Pipe3

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

 During serial portion of frame, Current is updated with

the contents of Pending.

Two Tier Pipeline Caching System

 This somewhat elaborate strategy reduces mutexing

tremendously (to nearly 0 once we’re a few frames in)

 Room for improvement

Two Tier Pipeline Caching System

 This somewhat elaborate strategy reduces mutexing

tremendously (to nearly 0 once we’re a few frames in)

 Room for improvement

 Currently, only one VkPipeline will be created at a time

(because of the mutex)

Two Tier Pipeline Caching System

 This somewhat elaborate strategy reduces mutexing

tremendously (to nearly 0 once we’re a few frames in)

 Room for improvement

 Currently, only one VkPipeline will be created at a time

(because of the mutex)

 Could create Reservation for pending VkPipeline but

release mutex

 Other threads would only block if they were waiting for that

specific Reservation to be satisfied.

Two Tier Pipeline Caching System

 This somewhat elaborate strategy reduces mutexing

tremendously (to nearly 0 once we’re a few frames in)

 Room for improvement

 Currently, only one VkPipeline will be created at a time

(because of the mutex)

 Could create Reservation for pending VkPipeline but

release mutex

 Other threads would only block if they were waiting for that

specific Reservation to be satisfied.

 In practice, we don’t see this causing stalls, so haven’t
implemented—largely because VkPipelineCache

makes construction cheap after the first run

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Descriptor Core Concepts

 No exact analog in D3D9/11.

 Shader accessible resources are represented by
VkDescriptors

 VkDescriptor are arranged in Sets

 Sets are allocated from Pools

 Sets have Layouts, known at Pipeline creation time
vkCreateDescriptorPool(...);

vkCreateDescriptorSetLayout(...);

vkAllocDescriptorSets(...);

Sellers, Graham. “A Whirlwind Tour of Vulkan.” Siggraph 2015. Los Angeles Convention Center, Los Angeles, CA.

 11 August 2015. Conference Presentation.

Descriptor Core Concepts

 Shader accessible resources are represented by
VkDescriptors

 VkDescriptor are arranged in Sets

 Sets are allocated from Pools

 Sets have Layouts, known at Pipeline creation time
vkCreateDescriptorPool(...);

vkCreateDescriptorSetLayout(...);

vkAllocDescriptorSets(...);

 Layouts can be thought of as shader ABI.

 DescriptorSet is a concrete set of parameters being

passed into the shader.

Sellers, Graham. “A Whirlwind Tour of Vulkan.” Siggraph 2015. Los Angeles Convention Center, Los Angeles, CA.

 11 August 2015. Conference Presentation.

Descriptor Set Updates - Ideal

 Allocate and bake descriptor sets up front

 Group sets by frequency

 Only update changed sets (which would be “dynamic”)

Descriptor Set Updates - Ideal

 Allocate and bake descriptor sets up front

 Group sets by frequency

 Only update changed sets (which would be “dynamic”)

 This has been roughly the advice since Direct3D 10

 But APIs don’t require it (nor does Vulkan)

DescriptorSet - Reality

 Difficult to bake descriptors with Direct3D 11-like

abstraction

 Our approach

 Pre-allocate descriptor sets with fixed slots

 Only bind to used slots

 Update descriptors each draw

DescriptorSet - Reality

 Difficult to bake descriptors with Direct3D 11-like

abstraction

 Our approach

 Pre-allocate descriptor sets with fixed slots

 Only bind to used slots

 Update descriptors each draw

 This is a performance problem for us, but not yet clear

how much.

How Much Performance Lost?

 Not actually sure.

 To answer the question requires changing the

abstraction.

 Chicken => Egg => Chicken => …

 And changing the abstraction requires significant effort

for unknown gains.

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

General Strategies

 Pool resources together

 Sub-allocate from large pools

 Use per-thread pools to reduce contention

 Recycle dynamic pools on frame boundaries

Resources – Current strategy

Static Resources Dynamic Resources

• Global Pools

• Device Only

• Textures/Render Targets

• 128MB Pools

• VB/IB/CBs

• 8MB Pools

• Per-Thread Pools

• Host Visible (Persistently

Mapped)

• VB/IB/CBs

• 8MB Pools

Dynamic Vertex/Index Buffers

 To update:

 Grab new offset from per-thread pool

 memcpy into pool

 Bind VBs with: vkCmdBindVertexBuffers(..,buffer,offset)

 Bind IBs with: vkCmdBindIndexBuffer(..,buffer,offset,..)

 Recycle pools when last GPU fence of frame retires

http://www.slideshare.net/basisspace/efficient-buffer-management

Dynamic Uniform Buffers

 Differences from VB/IBs:

 UBOs are bound via descriptors

 Use dynamic UBOs to avoid vkUpdateDescriptors

 Pass UBO offset to vkCmdBindDescriptorSets

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Image Core Concepts

 ID3D11Texture == VkImage

 Images are created in fiveish steps:

1. The image header is created using vkCreateImage

2. The data store is suballocated from an appropriate pool

3. The data store is bound to the header via
vkBindImageMemory

4. The image is transitioned to VK_IMAGE_LAYOUT_GENERAL

5. The image is filled from a staging buffer using
vkCmdCopyBufferToImage

 Initial (pool) allocation can be expensive (100s μs).

 Suballocation is cheap (100s ns)

 Binding also cheap (100s ns)

 Can reuse same data store for different purposes in

different parts of the frame.

 Huge memory savings!

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Mo’ Copies Mo’ Problems

 Asking to do a large allocation just-in-time (staging buffer)

 Extra copies of texture data make me sad

1. Load in raw bits from disk into host memory.

2. Convert to usable GPU format.

3. Copy into Staging Buffer.

 This could be reduced by 1 (and usually 2 copies)!

 ie, read directly from disk into a GPU accessible buffer!

Better Image Data Downloads

 Apply GL Concepts to Vulkan

 Pixel Buffer Objects (PBO)

 Persistently Mapped Buffers (PMB)

 PBO + PMB = “malloc’d” staging memory

 Suballocation wins again!

Better Image Data Downloads

 In the Renderer

 At the beginning of time, allocate a single staging buffer
with the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and
VK_BUFFER_USAGE_TRANSFER_SRC_BIT.

 Map it

 In loading code

 Read in image header from disk

 Ask Renderer whether format can be directly consumed

 If so, ask Renderer for allocation to read image bytes into

 Once data has been read, notify Renderer

 No extra maps!

 No large allocations during image streaming!

Better Image Data Downloads

 In the Renderer

 At the beginning of time, allocate a single staging buffer
with the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and
VK_BUFFER_USAGE_TRANSFER_SRC_BIT.

 Map it

 In loading code

 Read in image header from disk

 Ask Renderer whether format can be directly consumed

 If not, read image bytes into temporary buffer

 Then ask Renderer for allocation to read converted bytes

 Convert from temporary buffer to Renderer allocation

 Once data has been converted, notify Renderer

 No extra maps!

 No large allocations during image streaming!

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

 Remember this?

Internal Fragmentation

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

 Remember this?

 Can’t solve for everything (notably opaque pools)

 But can make better for per-thread pools (dynamic VB/

IB/CB)

Internal Fragmentation

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Improving Internal Fragmentation

 In the Renderer (dawn of time)

 At the beginning of time, allocate a single staging buffer
with the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and
VK_BUFFER_USAGE_TRANSFER_SRC_BIT.

 Map it, store pointer as pBase

 Create a head offset, started at 0.

 In the Renderer (on the fly)

 When asked for an allocation, atomic increment head by

the size of the allocation.

 If returned value + allocSize < totalSize, we can simply

return pBase + returned Value for writer

 If not, decide whether to create a new pool (requires

lock), stall waiting for more data (CPU-GPU sync point)

or return NULL.

 Recycle

LONG InterlockedAdd(LONG volatile *Addend, LONG Value);

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Final thoughts

 Vulkan provides a modern, multithreaded API to GPU

programming

 In exchange for peak performance and proportional

taxation, Vulkan requires more from applications

Final thoughts

 Vulkan provides a modern, multithreaded API to GPU

programming

 In exchange for peak performance and proportional

taxation, Vulkan requires more from applications

 Something power, something responsibility.

Final thoughts

 Vulkan provides a modern, multithreaded API to GPU

programming

 In exchange for peak performance and proportional

taxation, Vulkan requires more from applications

 Something power, something responsibility.

 Questions?

 mcjohn at valvesoftware dot com

 @basisspace on twitter

