
High Performance Vulkan

Lessons Learned from Source 2

John McDonald

Sections

 Introduction and Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Disclaimer

 Largely based on Dan Ginsburg’s Siggraph 2015

Vulkan talk, but updated for 1.0.

 3385 changes to Vulkan since that talk.

 So hopefully not a rehash even if you were there 

 Slides may be buggy!

 Guidance based on Desktop GPUs (AMD, Intel,

NVIDIA)

 Everything should work on mobile GPUs, but may not be

optimal performance

Goals

 Thorough understanding of Vulkan concepts

 Concrete examples to follow for common resource

updates

Goals

 Thorough understanding of Vulkan concepts

 Concrete examples to follow for common resource

updates

 Avoid repeating our mistakes

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Source 2 Overview

 OpenGL, Direct3D 9, Direct3D 11, Vulkan

 Windows, Linux, Mac

 Dota 2 Reborn

Source 2 Rendering

 Direct3D 11-like Rendersystem abstraction

 Multithreaded

 D3D9/GL: software command buffers

 D3D11: deferred contexts

 Single submission thread

Source 2 Rendering (GL)

Source 2 Rendering (GL)

Source 2 Rendering (GL)

Source 2 Vulkan Port

 Started with GL and D3D11 renderer

 D3D11 deferred contexts mapped well to Vulkan command

buffers

 Leveraged GLSL shader conversion already in GL layer

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

General Guidance

 Setting up the Validation layer should be part of day 1

tasks.

 Validation should be enabled all through development

 Without Validation, Vulkan will not report errors back to

you, most likely will simply crash if given invalid parameters

/ commands.

 Spend a little time investing in app thread debugging

tools

 Single Threaded Job mode

 Heap Validation tools (malloc/debug)

 CPU-GPU sync point detection

 Invest in tools that can visualize threads well

General Guidance - Threading

 Threads should be as independent as possible

 Any cross talk between threads significantly reduces

benefit from multithreading

General Guidance - Threading

 Threads should be as independent as possible

 Any cross talk between threads significantly reduces

benefit from multithreading

Bad threading is worse

than no threading

General Guidance Caveats

 However, per-thread resources lead to memory bloat

 Over time, all threads consume the same large memory

footprint

 Conceptually a form of internal fragmentation

 Can be difficult to stay on top of

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal fragmentation visualized

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Internal Fragmentation Consumption

 Ideal

 Total = Sum(Per Thread Memory)

 Worst Case

 Total = Max(Per Thread Memory) * Num Threads

 Possible Solution Later

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Command Buffer Core Concepts

 Conceptually similar to D3D11 Deferred Context

 Inherit no* state from other command buffers

 VkCommandBuffers are central to the split between

specification of work and scheduling of work.

 Between vkBeginCommandBuffer and

vkEndCommandBuffer, a command buffer is said to be

recording. This is the specification of work.

 Once a Command Buffer has been Ended, it can be
scheduled for execution with vkQueueSubmit.

Command Buffer Core Concepts

 Conceptually similar to D3D11 Deferred Context

 Inherit no* state from other command buffers

 VkCommandBuffers are central to the split between

specification of work and scheduling of work.

 Between vkBeginCommandBuffer and

vkEndCommandBuffer, a command buffer is said to be

recording. This is the specification of work.

 Once a Command Buffer has been Ended, it can be
scheduled for execution with vkQueueSubmit.

* Except Renderpass information between primary->secondary command buffers, which are beyond the scope of this presentation.

Command Buffer Core Concepts

 A VkCommandBuffer is allocated from a VkCommandPool

via a call to vkAllocateCommandBuffers

 VkCommandPools, like other pools, allow for lock-free

allocation.

 Each VkCommandBuffer—and VkCommandPool—is

“externally synchronized.” This means the application

promises not to act on the same Command Buffer or

Command Pool from two threads simultaneously.

Command Buffers in Source 2

 Used where D3D11 deferred contexts were used

 One VkCommandBuffer per thread per render target

 Except full screen passes—one command buffer only

 Single thread performs submission to queue

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf

CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf

CmdBuf

CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf

CmdBuf

CmdBuf CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool
Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf

CmdBuf CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 ResourePool is per thread. The ResourcePool spills to
VkCommandPool (per thread)

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 All work passed to Submit thread via ThreadSafe

Queue. Ordering is effectively arbitrary.

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Submit

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 All work passed to Submit thread via ThreadSafe

Queue. Ordering is effectively arbitrary.

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Submit

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Allocation and Reuse

 All work passed to Submit thread via ThreadSafe

Queue. Ordering is effectively arbitrary.

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Submit

Thread0

Thread1

Thread2

Submit

Main

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

At least one frame

Command Buffer Allocation and Reuse

 Recycle VkCommandBuffer back to the thread they

came from for next time.

Thread 0

ResourcePool

CmdBuf CmdBuf

CmdBuf CmdBuf

CmdBuf CmdBuf CmdBuf

Submit

Thread0

Thread1

Thread2

Submit

Main Check Fences

Time

Thread 1

ResourcePool

Thread 2

ResourcePool

Command Buffer Performance

 Submit in batches

 vkQueueSubmit flushes—so generally 1-2 per frame max.

 Faster to group submissions together

 Minimize number of command buffers

 We are still investigating how to decrease our count

 Use VK_CMD_BUFFER_OPTIMIZE_ONE_TIME_SUBMIT_BIT

 Optimize for one-time submission

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Pipeline Core Concepts

 All Pipeline state data is encapsulated in a reusable
VkPipeline object.

 Which Shaders are set and active

 Stencil Test

 Scissor Mode

 Blend State

 etc

 A VkPipeline is created by calling

vkCreateGraphicsPipelines or

vkCreateComputePipelines.

 Creation of these may be very expensive, the cost may be
alleviated by using VkPipelineCache objects.

 Once created a VkPipeline is immutable, but can be

used from many threads at once.

VkPipelineCache

 VkPipelineCache is ARB_program_binary for

Vulkan.

 Load from disk

 Give to Vulkan

 Makes VkPipeline creation magically faster (~20x

faster)

 Before shutdown

 Ask size

 Get bytes from Vulkan

 Write to disk

 Dota 2 Reborn’s VkPipelineCache is ~4 MB on disk.

Efficient Pipeline Construction

 Problem: Need efficient access to VkPipelines from

many threads at once

 Bonus Problem: VkPipelines may be large, don’t

want to multiply cost by N threads.

 Solution: Two Tiered Cache

 Two Pipeline Maps

 1 Read Only Pipeline Map (Current)

 1 Read/Write Pipeline Map (Pending)

Pipeline State Creation Visualized

Pipeline State

Hash

 Application is issuing D3D11-like rendering

commands…

Pipeline State Creation Visualized

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

Pipeline State

Hash

Lookup (Lock Free)

 At draw time, state is hashed. Current cache is checked
for existing VkPipeline.

Pipeline State Creation Visualized

Pipeline State

Hash

Lookup (mutexed)

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

 If doesn’t exist in Current, lock is grabbed and Pending

cache is checked.

Pipeline State Creation Visualized

Pipeline State

Hash
Create Pipe

Pipe3

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

(mutexed)

 Still can’t find it—create now.

 Push into Pending Pipe Map, and return to caller

Pipeline State Creation Visualized

Pipeline State

Hash
Create Pipe

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

(mutexed)

Pipe3

Pipe3

Pipeline State Creation Visualized

End of

Frame

Pipe3

Pending Pipe Map Current Pipe Map

Pipe0

Pipe1

Pipe2

 During serial portion of frame, Current is updated with

the contents of Pending.

Two Tier Pipeline Caching System

 This somewhat elaborate strategy reduces mutexing

tremendously (to nearly 0 once we’re a few frames in)

 Room for improvement

Two Tier Pipeline Caching System

 This somewhat elaborate strategy reduces mutexing

tremendously (to nearly 0 once we’re a few frames in)

 Room for improvement

 Currently, only one VkPipeline will be created at a time

(because of the mutex)

Two Tier Pipeline Caching System

 This somewhat elaborate strategy reduces mutexing

tremendously (to nearly 0 once we’re a few frames in)

 Room for improvement

 Currently, only one VkPipeline will be created at a time

(because of the mutex)

 Could create Reservation for pending VkPipeline but

release mutex

 Other threads would only block if they were waiting for that

specific Reservation to be satisfied.

Two Tier Pipeline Caching System

 This somewhat elaborate strategy reduces mutexing

tremendously (to nearly 0 once we’re a few frames in)

 Room for improvement

 Currently, only one VkPipeline will be created at a time

(because of the mutex)

 Could create Reservation for pending VkPipeline but

release mutex

 Other threads would only block if they were waiting for that

specific Reservation to be satisfied.

 In practice, we don’t see this causing stalls, so haven’t
implemented—largely because VkPipelineCache

makes construction cheap after the first run

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Descriptor Core Concepts

 No exact analog in D3D9/11.

 Shader accessible resources are represented by
VkDescriptors

 VkDescriptor are arranged in Sets

 Sets are allocated from Pools

 Sets have Layouts, known at Pipeline creation time
vkCreateDescriptorPool(...);

vkCreateDescriptorSetLayout(...);

vkAllocDescriptorSets(...);

Sellers, Graham. “A Whirlwind Tour of Vulkan.” Siggraph 2015. Los Angeles Convention Center, Los Angeles, CA.

 11 August 2015. Conference Presentation.

Descriptor Core Concepts

 Shader accessible resources are represented by
VkDescriptors

 VkDescriptor are arranged in Sets

 Sets are allocated from Pools

 Sets have Layouts, known at Pipeline creation time
vkCreateDescriptorPool(...);

vkCreateDescriptorSetLayout(...);

vkAllocDescriptorSets(...);

 Layouts can be thought of as shader ABI.

 DescriptorSet is a concrete set of parameters being

passed into the shader.

Sellers, Graham. “A Whirlwind Tour of Vulkan.” Siggraph 2015. Los Angeles Convention Center, Los Angeles, CA.

 11 August 2015. Conference Presentation.

Descriptor Set Updates - Ideal

 Allocate and bake descriptor sets up front

 Group sets by frequency

 Only update changed sets (which would be “dynamic”)

Descriptor Set Updates - Ideal

 Allocate and bake descriptor sets up front

 Group sets by frequency

 Only update changed sets (which would be “dynamic”)

 This has been roughly the advice since Direct3D 10

 But APIs don’t require it (nor does Vulkan)

DescriptorSet - Reality

 Difficult to bake descriptors with Direct3D 11-like

abstraction

 Our approach

 Pre-allocate descriptor sets with fixed slots

 Only bind to used slots

 Update descriptors each draw

DescriptorSet - Reality

 Difficult to bake descriptors with Direct3D 11-like

abstraction

 Our approach

 Pre-allocate descriptor sets with fixed slots

 Only bind to used slots

 Update descriptors each draw

 This is a performance problem for us, but not yet clear

how much.

How Much Performance Lost?

 Not actually sure.

 To answer the question requires changing the

abstraction.

 Chicken => Egg => Chicken => …

 And changing the abstraction requires significant effort

for unknown gains.

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

General Strategies

 Pool resources together

 Sub-allocate from large pools

 Use per-thread pools to reduce contention

 Recycle dynamic pools on frame boundaries

Resources – Current strategy

Static Resources Dynamic Resources

• Global Pools

• Device Only

• Textures/Render Targets

• 128MB Pools

• VB/IB/CBs

• 8MB Pools

• Per-Thread Pools

• Host Visible (Persistently

Mapped)

• VB/IB/CBs

• 8MB Pools

Dynamic Vertex/Index Buffers

 To update:

 Grab new offset from per-thread pool

 memcpy into pool

 Bind VBs with: vkCmdBindVertexBuffers(..,buffer,offset)

 Bind IBs with: vkCmdBindIndexBuffer(..,buffer,offset,..)

 Recycle pools when last GPU fence of frame retires

http://www.slideshare.net/basisspace/efficient-buffer-management

Dynamic Uniform Buffers

 Differences from VB/IBs:

 UBOs are bound via descriptors

 Use dynamic UBOs to avoid vkUpdateDescriptors

 Pass UBO offset to vkCmdBindDescriptorSets

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Image Core Concepts

 ID3D11Texture == VkImage

 Images are created in fiveish steps:

1. The image header is created using vkCreateImage

2. The data store is suballocated from an appropriate pool

3. The data store is bound to the header via
vkBindImageMemory

4. The image is transitioned to VK_IMAGE_LAYOUT_GENERAL

5. The image is filled from a staging buffer using
vkCmdCopyBufferToImage

 Initial (pool) allocation can be expensive (100s μs).

 Suballocation is cheap (100s ns)

 Binding also cheap (100s ns)

 Can reuse same data store for different purposes in

different parts of the frame.

 Huge memory savings!

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Fiveish?

 Glossed over “some” details in step 5.

Mo’ Copies Mo’ Problems

 Asking to do a large allocation just-in-time (staging buffer)

 Extra copies of texture data make me sad

1. Load in raw bits from disk into host memory.

2. Convert to usable GPU format.

3. Copy into Staging Buffer.

 This could be reduced by 1 (and usually 2 copies)!

 ie, read directly from disk into a GPU accessible buffer!

Better Image Data Downloads

 Apply GL Concepts to Vulkan

 Pixel Buffer Objects (PBO)

 Persistently Mapped Buffers (PMB)

 PBO + PMB = “malloc’d” staging memory

 Suballocation wins again!

Better Image Data Downloads

 In the Renderer

 At the beginning of time, allocate a single staging buffer
with the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and
VK_BUFFER_USAGE_TRANSFER_SRC_BIT.

 Map it

 In loading code

 Read in image header from disk

 Ask Renderer whether format can be directly consumed

 If so, ask Renderer for allocation to read image bytes into

 Once data has been read, notify Renderer

 No extra maps!

 No large allocations during image streaming!

Better Image Data Downloads

 In the Renderer

 At the beginning of time, allocate a single staging buffer
with the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and
VK_BUFFER_USAGE_TRANSFER_SRC_BIT.

 Map it

 In loading code

 Read in image header from disk

 Ask Renderer whether format can be directly consumed

 If not, read image bytes into temporary buffer

 Then ask Renderer for allocation to read converted bytes

 Convert from temporary buffer to Renderer allocation

 Once data has been converted, notify Renderer

 No extra maps!

 No large allocations during image streaming!

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

 Remember this?

Internal Fragmentation

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

 Remember this?

 Can’t solve for everything (notably opaque pools)

 But can make better for per-thread pools (dynamic VB/

IB/CB)

Internal Fragmentation

0 50 100 150

Thread 3

Thread 2

Thread 1

Thread 0

Useful

Waste

Improving Internal Fragmentation

 In the Renderer (dawn of time)

 At the beginning of time, allocate a single staging buffer
with the VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT and
VK_BUFFER_USAGE_TRANSFER_SRC_BIT.

 Map it, store pointer as pBase

 Create a head offset, started at 0.

 In the Renderer (on the fly)

 When asked for an allocation, atomic increment head by

the size of the allocation.

 If returned value + allocSize < totalSize, we can simply

return pBase + returned Value for writer

 If not, decide whether to create a new pool (requires

lock), stall waiting for more data (CPU-GPU sync point)

or return NULL.

 Recycle

LONG InterlockedAdd(LONG volatile *Addend, LONG Value);

Sections

 Goals

 Source 2 Overview

 General Guidance

 Command Buffers

 Pipelines

 Descriptor Set Updates

 Memory Management

 Image Management

 Internal Fragmentation

 Final Thoughts

Final thoughts

 Vulkan provides a modern, multithreaded API to GPU

programming

 In exchange for peak performance and proportional

taxation, Vulkan requires more from applications

Final thoughts

 Vulkan provides a modern, multithreaded API to GPU

programming

 In exchange for peak performance and proportional

taxation, Vulkan requires more from applications

 Something power, something responsibility.

Final thoughts

 Vulkan provides a modern, multithreaded API to GPU

programming

 In exchange for peak performance and proportional

taxation, Vulkan requires more from applications

 Something power, something responsibility.

 Questions?

 mcjohn at valvesoftware dot com

 @basisspace on twitter

