

AGENDA

What is Deep Learning? GPUs and DL DL in practice Scaling up DL

What is Deep Learning?

DEEP LEARNING EVERYWHERE

MEDICINE & BIOLOGY

Cancer Cell Detection

Diabetic Grading

Drug Discovery

MEDIA & ENTERTAINMENT

Video Captioning Video Search Real Time Translation

SECURITY & DEFENSE

Face Detection

Video Surveillance

Satellite Imagery

AUTONOMOUS MACHINES

Pedestrian Detection Lane Tracking Recognize Traffic Sign

INTERNET & CLOUD

Image Classification Speech Recognition Language Translation Language Processing Sentiment Analysis Recommendation

Traditional machine perception

Hand crafted feature extractors

Deep learning approach

Train:

6 💿 NVIDIA.

Artificial neural network

A collection of simple, trainable mathematical units that collectively learn complex functions

Given sufficient training data an artificial neural network can approximate very complex functions mapping raw data to output decisions

7 💿 nvidia.

Artificial neurons

Biological neuron

From Stanford cs231n lecture notes

Artificial neuron

8 💿 nvidia.

Deep neural network (dnn)

Deep learning benefits

- Robust
 - No need to design the features ahead of time features are automatically learned to be optimal for the task at hand
 - Robustness to natural variations in the data is automatically learned
- Generalizable
 - The same neural net approach can be used for many different applications and data types
- Scalable
 - Performance improves with more data, method is massively parallelizable

10 💿 nvidia

Baidu Deep Speech 2

End-to-end Deep Learning for English and Mandarin Speech Recognition

English and Mandarin speech recognition

Transition from English to Mandarin made simpler by end-to-end DL

No feature engineering or Mandarin-specifics required

More accurate than humans

Error rate 3.7% vs. 4% for human tests

http://svail.github.io/mandarin/

http://arxiv.org/abs/1512.02595

AlphaGo

First Computer Program to Beat a Human Go Professional

Training DNNs: 3 weeks, 340 million training steps on 50 GPUs

Play: Asynchronous multi-threaded search

Simulations on CPUs, policy and value DNNs in parallel on GPUs

Single machine: 40 search threads, 48 CPUs, and 8 GPUs

Distributed version: 40 search threads, 1202 CPUs and 176 GPUs

Outcome: Beat both European and World Go champions in best of 5 matches

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html http://deepmind.com/alpha-go.html

Deep Learning for Autonomous vehicles

Deep Learning Synthesis

Texture synthesis and transfer using CNNs. Timo Aila et al., NVIDIA Research

THE AI RACE IS ON

The Big Bang in Machine Learning

"Google's AI engine also reflects how the world of computer hardware is changing. (It) depends on machines equipped with GPUs... And it depends on these chips more than the larger tech universe realizes."

WIRED

GPUs and DL

USE MORE PROCESSORS TO GO FASTER

Deep learning development cycle

Three Kinds of Networks

DNN - all fully connected layers

CNN - some convolutional layers

RNN - recurrent neural network, LSTM

19 💿 nvidia.

DNN Key operation is dense M x V

Repeat for each layer

Backpropagation uses dense matrix-matrix multiply starting from softmax scores

DNN

Batching for training and latency insensitive. $M \ge M$

Batched operation is M x M - gives re-use of weights.

Without batching, would use each element of Weight matrix once.

Want 10-50 arithmetic operations per memory fetch for modern compute architectures.

21 💿 nvidia.

CNN Requires convolution and M x V

Multiply limited - even without batching.

6D Loop For each output map j For each input map k For each pixel x,y For each kernel element u,v B_{xyj} += A_{(x-u)(y-v)k} x K_{uvkj}

22 💿 nvidia.

Other Operations

To finish building a DNN

Complex networks have hundreds of millions of weights.

23 壑 nvidia.

Lots of Parallelism Available in a DNN

- Inputs
- Points of a feature map
- Filters
- Elements within a filter

- Multiplies within layer are independent
- Sums are reductions
- Only layers are dependent
- No data dependent operations
 => can be statically scheduled

TESLA M40

World's Fastest Accelerator for Deep Learning Training

Note: Caffe benchmark with AlexNet,

CPU server uses 2x E5-2680v3 12 Core 2.5GHz CPU, 128GB System Memory, Ubuntu 14.04

Comparing CPU and GPU - server class

Xeon E5-2698 and Tesla M40

NVIDIA Whitepaper "GPU based deep learning inference: A performance and power analysis."

DL in practice

The Engine of Modern Al

NVIDIA GPU PLATFORM

*U. Washington, CMU, Stanford, TuSimple, NYU, Microsoft, U. Alberta, MIT, NYU Shanghai

CUDA for Deep Learning Development

Deep Learning Primitives

Accelerating Artificial Intelligence

developer.nvidia.com/cudnn

- GPU-accelerated Deep Learning subroutines
- High performance neural network training
- Accelerates Major Deep Learning frameworks: Caffe, Theano, Torch, TensorFlow
- Up to 3.5x faster AlexNet training in Caffe than baseline GPU

CUDA BOOSTS DEEP LEARNING

5X IN 2 YEARS

Caffe Performance

AlexNet training throughput based on 20 iterations, CPU: 1x E5-2680v3 12 Core 2.5GHz. 128GB System Memory, Ubuntu 14.04

NVIDIA DIGITS

Interactive Deep Learning GPU Training System

developer.nvidia.com/digits

ONE ARCHITECTURE – END-TO-END AI

Scaling Neural Networks

Data Parallelism

Notes:

Need to sync model across machines. Largest models do not fit on one GPU. Requires P-fold larger batch size. Works across many nodes – parameter server approach – linear speedup.

Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Ng and Bryan Catanzaro

Multiple GPUs

Near linear scaling - data parallel.

Ren Wu et al, Baidu, "Deep Image: Scaling up Image Recognition." arXiv 2015

Scaling Neural Networks

Model Parallelism

Notes:

Allows for larger models than fit on one GPU. Requires much more frequent communication between GPUs. Most commonly used within a node – GPU P2P. Effective for the fully connected layers.

Adam Coates, Brody Huval, Tao Wang, David J. Wu, Andrew Ng and Bryan Catanzaro

Scaling Neural Networks

Hyper Parameter Parallelism

Try many alternative neural networks in parallel – on different CPU / GPU / Machines. Probably the most obvious and effective way!

38 💿 nvidia.

Deep Learning Everywhere

