
DUANE MERRILL, PH.D.

NVIDIA RESEARCH

CUB:
A pattern of òcollectiveó software design, abstraction, and reuse

for kernel -level programming

2

What is CUB?

1. A design model for collective kernel -level primitives

How to make reusable software components for SIMT groups (warps, blocks, etc.)

2. A library of collective primitives

Block-reduce, block-sort, block -histogram, warp -scan, warp-reduce, etc.

3. A library of global primitives (built from collectives)

Device-reduce, device -sort, device -scan, etc.

Demonstrate collective composition, performance, performance -portability

3

Outline

1. Software reuse

2. SIMT collectives: the òmissingó CUDA abstraction layer

3. The soul of collective component design

4. Using CUBõs collective primitives

5. Making your own collective primitives

6. Other Very Useful Things in CUB

7. Final thoughts

4

Software reuse
Abstraction & composability are fundamental design principles

Reduce redundant programmer effort

Save time, energy, money

Reduce buggy software

Encapsulate complexity

Empower productivity -oriented programmers

Insulation from underlying hardware

ï five NVIDIA GPU architectures between 2008-2014

Software reuse empowers a durable programming model

5

Software reuse
Abstraction & composability are fundamental design principles

Reduce redundant programmer effort

Save time, energy, money

Reduce buggy software

Encapsulate complexity

Empower productivity -oriented programmers

Insulation from changing capabilities of the underlying hardware

ï NVIDIA has produced nine different CUDA GPU architectures since 2008!

Software reuse empowers a durable programming model

6

Outline

1. Software reuse

2. SIMT collectives: the òmissingó CUDA abstraction layer

3. The soul of collective component design

4. Using CUBõs collective primitives

5. Making your own collective primitives

6. Other Very Useful Things in CUB

7. Final thoughts

7

Parallel programming is hardé

8

Parallel decomposition and grain sizing

Synchronization

Deadlock, livelock , and data races

Plurality of state

Plurality of flow control (divergence, etc.)

Bookkeeping control structures

Memory access conflicts, coalescing, etc.

Occupancy constraints from SMEM, RF, etc

Algorithm selection and instruction scheduling

Special hardware functionality, instructions, etc.

No, cooperative parallel programming is hardé

9

é

Parallel decomposition and grain sizing

Synchronization

Deadlock, livelock , and data races

Plurality of state

Plurality of flow control (divergence, etc.)

Bookkeeping control structures

Memory access conflicts , coalescing, etc .

Occupancy constraints from SMEM, RF, etc

Algorithm selection and instruction scheduling

Special hardware functionality, instructions, etc.

No, cooperative parallel programming is hardé

10

CUDA today

Threadblock Threadblock Threadblock

CUDA function stub

Application

é

11

Software abstraction in CUDA

PROBLEM: virtually every CUDA kernel written today is cobbled from scratch
A tunability , portability, and maintenance concern

CUDA function stub

Kernel threadblock

é

Application

12

Kernel function stub

Software abstraction in CUDA

é

collective interface

Application

scalar interface

Collective software components
reduce development cost, hide complexity, bugs, etc.

BlockStore

BlockSort

BlockLoad

BlockStore

BlockSort

BlockLoad

collective

function

13

What do these applications have in common?

0

1

1

2

1

1

2

2

2

2

1

3

2

3

2

1 2

2

Ð

Ð

Ð

Parallel sparse graph traversal Parallel radix sort

Parallel BWT compression Parallel SpMV

14

What do these applications have in common ?
Block-wide prefix -scan

Scan for

enqueueing

Scan for

segmented

reduction

Scan for solving

recurrences

(move-to-front)

Scan for

partitioning

0

1

1

2

1

1

2

2

2

2

1

3

2

3

2

1 2

2

Ð

Ð

Ð

Parallel sparse graph traversal Parallel radix sort

Parallel BWT compression Parallel SpMV

15

Examples of parallel scan data flow
16 threads contributing 4 items each

t3

t3

t0 t3 t2 t1

t2

t2

t3

t3

t3

t3

id

id id

t15 t9 t8 t10 t5 t4 t6 t7 t1 t0 t2 t3 t13 t12 t14 t11

t15 t9 t8 t10 t5 t4 t6 t7 t1 t0 t2 t3 t13 t12 t14 t11

t15 t9 t8 t10 t5 t4 t6 t7 t1 t0 t2 t3 t13 t12 t14 t11

t7

t7

t4 t7 t6 t5

t6

t6

t5

t5

t4

t4

id

id id
t1

1
t1

1

t8
t1

1

t1

0
t9

t1

0
t1

0

t9

t9

t8

t8

id

id id
t1

5
t1

5

t1

2

t1

5

t1

4

t1

3
t1

4
t1

4

t1

3
t1

3

t1

2
t1

2

id

id id

t4 t7 t6 t5

t1

1

t8
t1

1

t1

0
t9

t1

0
t9 t8

t1

5
t1

5

t1

2

t1

5

t1

4

t1

3
t1

4
t1

4

t1

3
t1

3

t1

2
t1

2

t1 t0 t2 t3

t1 t0 t2 t3

t1 t0 t2 t3

t5 t4 t6 t7

t5 t4 t6 t7

t5 t4 t6 t7

t9 t8 t10 t11

t9 t8 t10 t11

t9 t8 t10 t11

t13 t12 t14 t15

t13 t12 t14 t15

t13 t12 t14 t15

t3

t3

t3

t2

t2

t2

t1

t1

t1

t0

t0

t0

t3

t3

t0 t3 t2 t1

t2

t2

t1

t1

t0

t0

id

id id

t3

t3

t3

t2

t2

t2

t1

t1

t1

t0

t0

t0

t15 t9 t8 t10 t5 t4 t6 t7 t1 t0 t2 t3 t13 t12 t14 t11

t15 t9 t8 t10 t5 t4 t6 t7 t1 t0 t2 t3 t13 t12 t14 t11

t15 t9 t8 t10 t5 t4 t6 t7 t1 t0 t2 t3 t13 t12 t14 t11

t15 t9 t8 t10 t5 t4 t6 t7 t1 t0 t2 t3 t13 t12 t14 t11

t15 t9 t8 t10 t5 t4 t6 t7 t1 t0 t2 t3 t13 t12 t14 t11

t15 t9 t8 t10 t5 t4 t6 t7 t1 t0 t2 t3 t13 t12 t14 t11

Brent-Kung hybrid

(Work-efficient ~130 binary ops, depth 15)

Kogge-Stone hybrid

(Depth-efficient ~170 binary ops, depth 12)

16

CUDA today
Kernel programming is complicating

threadblock threadblock threadblock

CUDA function stub

Application

é

17

Kernel function stub

Software abstraction in CUDA

é

collective interface

Application

scalar interface

Collective software components
reduce development cost, hide complexity, bugs, etc.

BlockStore

BlockSort

BlockLoad

BlockStore

BlockSort

BlockLoad

collective

function

18

Outline

1. Software reuse

2. SIMT collectives: the òmissingó CUDA abstraction layer

3. The soul of collective component design

4. Using CUBõs collective primitives

5. Making your own collective primitives

6. Other Very Useful Things in CUB

7. Final thoughts

19

threadblock

 BlockSort

Collective composition
CUB primitives are easily nested & sequenced

threadblock threadblock threadblock

é

CUDA stub

application

BlockSort BlockSort BlockSort

20

threadblock

 BlockSort

Collective composition
CUB primitives are easily nested & sequenced

BlockRadixRank

BlockExchange

threadblock threadblock threadblock

é

CUDA stub

application

BlockSort BlockSort BlockSort

21

threadblock

 BlockSort

Collective composition
CUB primitives are easily nested & sequenced

BlockRadixRank

BlockScan

BlockExchange

threadblock threadblock threadblock

é

CUDA stub

application

BlockSort BlockSort BlockSort

22

threadblock

 BlockSort

Collective composition
CUB primitives are easily nested & sequenced

BlockRadixRank

BlockScan

WarpScan

BlockExchange

threadblock threadblock threadblock

é

CUDA stub

application

BlockSort BlockSort BlockSort

