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CUB: 
A pattern of òcollectiveó software design, abstraction, and reuse  

for kernel -level programming  
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What is CUB? 

1. A design model for collective  kernel -level primitives  

How to make reusable software components for SIMT groups (warps, blocks, etc.)  

2. A library of collective primitives  

Block-reduce, block-sort, block -histogram, warp -scan, warp-reduce, etc. 

3. A library of global primitives (built from collectives)  

Device-reduce, device -sort, device -scan, etc.  

Demonstrate collective composition, performance, performance -portability  
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Outline  

1. Software reuse  

2. SIMT collectives: the òmissingó CUDA abstraction layer 

3. The soul of collective component design  

4. Using CUBõs collective primitives 

5. Making your own collective primitives  

6. Other Very Useful Things in CUB 

7. Final thoughts  
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Software reuse  
Abstraction  & composability are fundamental design principles  

Reduce redundant programmer effort  

Save time, energy, money 

Reduce buggy software 

Encapsulate complexity  

Empower productivity -oriented programmers  

Insulation from underlying hardware  

ï five NVIDIA GPU architectures between 2008-2014 

 

Software reuse empowers a durable  programming model 
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Software reuse  
Abstraction  & composability are fundamental design principles  

Reduce redundant programmer effort  

Save time, energy, money 

Reduce buggy software 

Encapsulate complexity  

Empower productivity -oriented programmers  

Insulation from changing capabilities of the underlying hardware  

ï NVIDIA has produced nine different CUDA GPU architectures since 2008! 

 

Software reuse empowers a durable  programming model 

 



6 

Outline  

1. Software reuse  

2. SIMT collectives: the òmissingó CUDA abstraction layer 

3. The soul of collective component design  

4. Using CUBõs collective primitives 

5. Making your own collective primitives  

6. Other Very Useful Things in CUB 

7. Final thoughts  
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Parallel programming is hardé 
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Parallel decomposition and grain sizing  

Synchronization 

Deadlock, livelock , and data races 

Plurality of state  

Plurality of flow control (divergence, etc.)  

 

Bookkeeping control structures  

Memory access conflicts, coalescing, etc.  

Occupancy constraints from SMEM, RF, etc 

Algorithm selection and instruction scheduling  

Special hardware functionality, instructions, etc.  

 

No, cooperative  parallel programming is hardé 
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Parallel decomposition and grain sizing  

Synchronization 

Deadlock, livelock , and data races 

Plurality of state 

Plurality of flow control (divergence, etc.)  

 

Bookkeeping control structures  
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Algorithm selection and instruction scheduling  

Special hardware functionality, instructions, etc.  

 

No, cooperative  parallel programming is hardé 
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CUDA today 

Threadblock Threadblock Threadblock 

CUDA function stub 

Application 

é 
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Software abstraction in CUDA  
 

PROBLEM: virtually every CUDA kernel written today is cobbled from scratch  
A tunability , portability, and maintenance concern  

CUDA function stub 

Kernel threadblock 

é 

Application 
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Kernel function stub  

Software abstraction in CUDA  

é 

collective interface 

Application  

scalar interface 

Collective software components  
reduce development cost, hide complexity, bugs, etc.  

BlockStore  

BlockSort  

BlockLoad  

BlockStore  

BlockSort  

BlockLoad  

collective 

function  
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What do these applications have in common?  
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Parallel sparse graph traversal Parallel radix sort 

Parallel BWT compression Parallel SpMV 
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What do these applications have in common ? 
Block-wide prefix -scan 

Scan for 

enqueueing 

Scan for 

segmented  

reduction 

Scan for solving 

recurrences 

(move-to-front) 

Scan for 

partitioning 
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Parallel sparse graph traversal Parallel radix sort 

Parallel BWT compression Parallel SpMV 
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Examples of parallel scan data flow  
16 threads contributing 4 items each  
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Brent-Kung hybrid 

(Work-efficient ~130 binary ops, depth 15) 

Kogge-Stone hybrid 

(Depth-efficient ~170 binary ops, depth 12) 
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CUDA today 
Kernel programming is complicating  

threadblock  threadblock  threadblock  

CUDA function stub  

Application  

é 
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Kernel function stub  

Software abstraction in CUDA  

é 

collective interface 

Application  

scalar interface 

Collective software components  
reduce development cost, hide complexity, bugs, etc.  

BlockStore  

BlockSort  

BlockLoad  

BlockStore  

BlockSort  

BlockLoad  

collective 

function  
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Outline  

1. Software reuse  

2. SIMT collectives: the òmissingó CUDA abstraction layer 

3. The soul of collective component design  

4. Using CUBõs collective primitives 

5. Making your own collective primitives  

6. Other Very Useful Things in CUB 

7. Final thoughts  
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threadblock 

 

 

 

 

 

 

 BlockSort  

Collective composition  
CUB primitives are easily nested & sequenced 

threadblock threadblock threadblock 
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CUDA stub 

application 

BlockSort  BlockSort  BlockSort  
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threadblock 

 

 

 

 

 

 

 

 

 

 

 BlockSort  

Collective composition  
CUB primitives are easily nested & sequenced 

BlockRadixRank  

BlockExchange  

threadblock threadblock threadblock 
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CUDA stub 

application 

BlockSort  BlockSort  BlockSort  
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threadblock 

 

 

 

 

 

 

 

 

 

 

 

 BlockSort  

Collective composition  
CUB primitives are easily nested & sequenced 

BlockRadixRank  

BlockScan  

BlockExchange  

threadblock threadblock threadblock 
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CUDA stub 

application 

BlockSort  BlockSort  BlockSort  
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threadblock 

 

 

 

 

 

 

 

 

 

 

 

 

 

 BlockSort  

Collective composition  
CUB primitives are easily nested & sequenced 

BlockRadixRank  

BlockScan  

WarpScan 

BlockExchange  

threadblock threadblock threadblock 
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CUDA stub 

application 

BlockSort  BlockSort  BlockSort  


