
Enabling Efficient Use of UPC and OpenSHMEM
PGAS Models on GPU Clusters

Presented at GTC ’15

Dhabaleswar K. (DK) Panda

The Ohio State University

E-mail: panda@cse.ohio-state.edu

http://www.cse.ohio-state.edu/~panda

Presented by

3

GTC ’15

• Accelerators are becoming common in high-end system architectures

• Increasing number of workloads are being ported to take advantage of NVIDIA GPUs
• As they scale to large GPU clusters with high compute density – higher the synchronization

and communication overheads – higher the penalty
• Critical to minimize these overheads to achieve maximum performance

Accelerator Era

57%
28%

Top 100 – Nov 2014
(28% use Accelerators) 57% use NVIDIA GPUs

4

GTC ’15

• Programming models provide abstract machine models
• Models can be mapped on different types of systems

- e.g. Distributed Shared Memory (DSM), MPI within a node, etc.
• Each model has strengths and drawbacks - suite different problems or applications

Parallel Programming Models Overview

P1 P2 P3

Shared Memory

P1 P2 P3

Memory Memory Memory

P1 P2 P3

Memory Memory Memory

Logical shared memory

Shared Memory Model

DSM
Distributed Memory Model

MPI (Message Passing Interface)

Partitioned Global Address Space (PGAS)

Global Arrays, UPC, Chapel, X10, CAF, …

5

GTC ’15

• Overview of PGAS models (UPC and OpenSHMEM)
• Limitations in PGAS models for GPU computing
• Proposed Designs and Alternatives
• Performance Evaluation
• Exploiting GPUDirect RDMA

Outline

6

GTC ’15

• PGAS models, an attractive alternative to traditional message
passing

- Simple shared memory abstractions

- Lightweight one-sided communication

- Flexible synchronization

• Different approaches to PGAS

Partitioned Global Address Space (PGAS) Models

- Libraries
• OpenSHMEM
• Global Arrays
• Chapel

- Languages
• Unified Parallel C (UPC)
• Co-Array Fortran (CAF)
• X10

7

GTC ’15

• SHMEM implementations – Cray SHMEM, SGI SHMEM, Quadrics SHMEM, HP SHMEM,
GSHMEM

• Subtle differences in API, across versions – example:

 SGI SHMEM Quadrics SHMEM Cray SHMEM

Initialization start_pes(0) shmem_init start_pes

Process ID _my_pe my_pe shmem_my_pe

• Made applications codes non-portable

• OpenSHMEM is an effort to address this:

“A new, open specification to consolidate the various extant SHMEM versions
into a widely accepted standard.” – OpenSHMEM Specification v1.0

by University of Houston and Oak Ridge National Lab
SGI SHMEM is the baseline

OpenSHMEM

8

GTC ’15

• Defines symmetric data objects that are globally
addressable

- Allocated using a collective shmalloc routine

- Same type, size and offset address at all
processes/processing elements (PEs)

- Address of a remote object can be calculated based on info
of local object

OpenSHMEM Memory Model

Symmetric
Object

b

b

 PE 0 PE 1

int main (int c, char *v[]) {
 int *b;

 start_pes();
 b = (int *) shmalloc (sizeof(int));

 shmem_int_get (b, b, 1 , 1);
} (dst, src, count,
pe)

int main (int c, char *v[]) {
 int *b;

 start_pes();
 b = (int *) shmalloc (sizeof(int));

}

9

GTC ’15

• UPC: a parallel extension to the C standard
• UPC Specifications and Standards:

- Introduction to UPC and Language Specification, 1999

- UPC Language Specifications, v1.0, Feb 2001

- UPC Language Specifications, v1.1.1, Sep 2004

- UPC Language Specifications, v1.2, 2005

- UPC Language Specifications, v1.3, In Progress - Draft Available

• UPC Consortium
- Academic Institutions: GWU, MTU, UCB, U. Florida, U. Houston, U. Maryland…

- Government Institutions: ARSC, IDA, LBNL, SNL, US DOE…

- Commercial Institutions: HP, Cray, Intrepid Technology, IBM, …

• Supported by several UPC compilers
- Vendor-based commercial UPC compilers: HP UPC, Cray UPC, SGI UPC

- Open-source UPC compilers: Berkeley UPC, GCC UPC, Michigan Tech MuPC

• Aims for: high performance, coding efficiency, irregular applications, …

Compiler-based: Unified Parallel C

10

GTC ’15

• Global Shared Space: can be accessed by all the threads
• Private Space: holds all the normal variables; can only be accessed by the local thread
• Example:

UPC Memory Model

Global Shared
Space

Private

Space

Thread 0 Thread 1 Thread 2 Thread 3

y y y y

A1[0] A1[1] A1[2] A1[3]

shared int A1[THREADS]; //shared variable
int main() {
 int y; //private variable
 A1[0] = 0; //local access
 A1[1] = 1; //remote access
}

11

GTC ’15

• Gaining attention in efforts towards Exascale computing

• Hierarchical architectures with multiple address spaces
• (MPI + PGAS) Model

- MPI across address spaces
- PGAS within an address space

• MPI is good at moving data between address spaces
• Within an address space, MPI can interoperate with other shared memory

programming models

• Re-writing complete applications can be a huge effort
• Port critical kernels to the desired model instead

MPI+PGAS for Exascale Architectures and Applications

12

GTC ’15

• Application sub-kernels can be re-written in MPI/PGAS
based on communication characteristics

• Benefits:
- Best of Distributed Computing Model
- Best of Shared Memory Computing Model

• Exascale Roadmap*:
- “Hybrid Programming is a practical way to

 program exascale systems”

Hybrid (MPI+PGAS) Programming

Kernel 1
MPI

Kernel 2
MPI

Kernel 3
MPI

Kernel N
MPI

HPC Application

Kernel 2
PGAS

Kernel N
PGAS

13

GTC ’15

• Unified communication runtime for MPI, UPC, OpenSHMEM,CAF available from MVAPICH2-X 1.9 :
(09/07/2012) http://mvapich.cse.ohio-state.edu

• Feature Highlights
- Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, MPI(+OpenMP) + OpenSHMEM, MPI(+OpenMP) + UPC,

MPI(+OpenMP) + CAF

- MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard compliant, CAF 2015 standard
compliant

- Scalable Inter-node and intra-node communication – point-to-point and collectives

• Effort underway for support on NVIDIA GPU clusters

MVAPICH2-X for Hybrid MPI + PGAS Applications

MPI, OpenSHMEM, UPC, CAF and
Hybrid (MPI + PGAS) Applications

Unified MVAPICH2-X Runtime

InfiniBand, RoCE, iWARP

OpenSHMEM Calls MPI Calls UPC Calls CAF Calls

14

GTC ’15

• Overview of PGAS models (UPC and OpenSHMEM)
• Limitations in PGAS models for GPU computing
• Proposed Designs and Alternatives
• Performance Evaluation
• Exploiting GPUDirect RDMA

Outline

15

GTC ’15

• PGAS memory models does not support disjoint memory address spaces - case with GPU
clusters

• OpenSHMEM case

• Copies severely limit the performance

• Synchronization negates the benefits of one-sided communication

• Similar limitations in UPC

Limitations of PGAS models for GPU Computing

PE 0

Existing OpenSHMEM Model with CUDA

PE 1

GPU-to-GPU
Data Movement

PE 0

cudaMemcpy (host_buf, dev_buf, . . .)
shmem_putmem (host_buf, host_buf, size, pe)
shmem_barrier (…)

host_buf = shmalloc (…)

PE 1

shmem_barrier (. . .)
cudaMemcpy (dev_buf, host_buf, size, . . .)

host_buf = shmalloc (…)

16

GTC ’15

• Overview of PGAS models (UPC and OpenSHMEM)
• Limitations in PGAS models for GPU computing
• Proposed Designs and Alternatives
• Performance Evaluation
• Exploiting GPUDirect RDMA

Outline

17

GTC ’15 Global Address Space with Host and Device Memory

Host Memory

Private

Shared

Host Memory

Device Memory Device Memory

Private

Shared

Private

Shared

Private

Shared

shared space
on host memory

shared space
on device memory

N N

N N

Extended APIs:
heap_on_device/heap_on_host
a way to indicate location on heap

Can be similar for dynamically allocated memory in UPC

heap_on_device();
/*allocated on device*/
dev_buf = shmalloc (sizeof(int));

heap_on_host();
/*allocated on host*/
host_buf = shmalloc (sizeof(int));

18

GTC ’15

• After device memory becomes part of the global shared space:
- Accessible through standard UPC/OpenSHMEM communication APIs
- Data movement transparently handled by the runtime
- Preserves one-sided semantics at the application level

• Efficient designs to handle communication
- Inter-node transfers use host-staged transfers with pipelining
- Intra-node transfers use CUDA IPC
- Possibility to take advantage of GPUDirect RDMA (GDR)

• Goal: Enabling High performance one-sided communications

semantics with GPU devices

CUDA-aware OpenSHMEM and UPC runtimes

19

GTC ’15

• Overview of PGAS models (UPC and OpenSHMEM)
• Limitations in PGAS models for GPU computing
• Proposed Designs and Alternatives
• Performance Evaluation
• Exploiting GPUDirect RDMA

Outline

20

GTC ’15

• Small messages benefit from selective CUDA registration – 22% for 4Byte messages

• Large messages benefit from pipelined overlap – 28% for 4MByte messages

S. Potluri, D. Bureddy, H. Wang, H. Subramoni and D. K. Panda, Extending OpenSHMEM for GPU Computing, Int'l Parallel
and Distributed Processing Symposium (IPDPS '13)

Shmem_putmem Inter-node Communication

Small Messages Large Messages

0
5

10
15
20
25
30
35

1 4 16 64 256 1K 4K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

0
500

1000
1500
2000
2500
3000

16K 64K 256K 1M 4M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

28%
22%

21

GTC ’15

• Using IPC for intra-node communication

• Small messages – 3.4X improvement for 4Byte messages

• Large messages – 5X for 4MByte messages

Shmem_putmem Intra-node Communication

Small Messages Large Messages

0
5

10
15
20
25
30

1 4 16 64 256 1K 4K

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

0
500

1000
1500
2000
2500
3000

16K 64K 256K 1M 4M

L
at

en
cy

 (u
se

c)

Message Size (Bytes)

5X 3.4X

Based on MVAPICH2X-2.0b + Extensions
Intel WestmereEP node with 8 cores

2 NVIDIA Tesla K20c GPUs, Mellanox QDR HCA
CUDA 6.0RC1

22

GTC ’15

• Modified SHOC Stencil2D kernel to use OpenSHMEM for cluster level parallelism

• The enhanced version shows 65% improvement on 192 GPUs with 4Kx4K problem size/GPU

• Using OpenSHMEM for GPU-GPU communication allows runtime to optimize non-contiguous transfers

Application Kernel Evaluation: Stencil2D

0
5000

10000
15000
20000
25000
30000

512x512 1Kx1K 2Kx2K 4Kx4K 8Kx8K

To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Problem Size/GPU
(192 GPUs)

0
2
4
6
8

10
12
14

48 96 192

 T
ot

al
 E

xe
cu

tio
n

Ti
m

e
(m

se
c)

Number of GPUs
(4Kx4K problem/GPU)

65%

23

GTC ’15

• Extended SHOC BFS kernel to run on a GPU cluster using a level-synchronized algorithm and
OpenSHMEM

• The enhanced version shows up to 12% improvement on 96 GPUs, a consistent improvement in
performance as we scale from 24 to 96 GPUs.

Application Kernel Evaluation: BFS

0
200
400
600
800

1000
1200
1400
1600

24 48 96To
ta

l E
xe

cu
tio

n
Ti

m
e

(m
se

c)

Number of GPUs
(1 million vertices/GPU with degree 32)

12%

24

GTC ’15

• Overview of PGAS models (UPC and OpenSHMEM)
• Limitations in PGAS models for GPU computing
• Proposed Designs and Alternatives
• Performance Evaluation
• Exploiting GPUDirect RDMA

Outline

25

GTC ’15

• GDR for small/medium message sizes
• Host-staging for large message to avoid PCIe

bottlenecks
• Hybrid design brings best of both
• 3.13 us Put latency for 4B (6.6X improvement)

and 4.7 us latency for 4KB
• 9X improvement for Get latency of 4B

OpenSHMEM: Inter-node Evaluation

0
5

10
15
20
25

1 4 16 64 256 1K 4K

Host-Pipeline
GDR

Small Message shmem_put D-D

Message Size (bytes)

La
te

nc
y

(u
s)

0

200

400

600

800

8K 32K 128K 512K 2M

Host-Pipeline
GDR

Large Message shmem_put D-D

Message Size (bytes)

La
te

nc
y

(u
s)

0
5

10
15
20
25
30
35

1 4 16 64 256 1K 4K

Host-Pipeline
GDR

Small Message shmem_get D-D

Message Size (bytes)

La
te

nc
y

(u
s)

6.6X

9X

26

GTC ’15

0
1
2
3
4
5
6
7
8
9

1 4 16 64 256 1K 4K

IPC GDR

Small Message shmem_put D-H

Message Size (bytes)

La
te

nc
y

(u
s)

• GDR for small and medium message sizes
• IPC for large message to avoid PCIe bottlenecks
• Hybrid design brings best of both
• 2.42 us Put D-H latency for 4 Bytes (2.6X improvement) and 3.92 us latency for 4 KBytes
• 3.6X improvement for Get operation
• Similar results with other configurations (D-D, H-D and D-H)

OpenSHMEM: Intra-node Evaluation

0
2
4
6
8

10
12
14

1 4 16 64 256 1K 4K

IPC GDR

Small Message shmem_get D-H

Message Size (bytes)

La
te

nc
y

(u
s)

2.6X 3.6X

27

GTC ’15

- Input size 2K x 2K x 2K
- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB)
- New designs achieve 20% and 19% improvements on 32 and 64 GPU nodes
K. Hamidouche, A. Venkatesh, A. Awan, H. Subramoni, C. Ching and D. K. Panda, Exploiting GPUDirect RDMA in
Designing High Performance OpenSHMEM for GPU Clusters. (under review)

OpenSHMEM: Stencil3D Application Kernel Evaluation

0

0.02

0.04

0.06

0.08

0.1

8 16 32 64

Ex
ec

ut
io

n
tim

e
(s

ec
)

Number of GPU Nodes

Host-Pipeline GDR

19%

28

GTC ’15

• PGAS models offers lightweight synchronization and one-sided
communication semantics

• Low-overhead synchronization is suited for GPU architecture
• Extensions to the PGAS memory model to efficiently support CUDA-

Aware PGAS models.
• High efficient GDR-based designs for OpenSHMEM
• Plan on exploiting the GDR-based designs for UPC
• Enhanced designs are planned to be incorporated into MVAPICH2-X

Conclusions

29

GTC ’15

- Learn more on how to combine and take advantage of Multicast
and GPUDirect RDMA simultaneously

• S5507 – High Performance Broadcast with GPUDirect RDMA and InfiniBand
 Hardware Multicast for Streaming Application
• Thursday, 03/19 (Today)
• Time: 14:00 -- 14:25
• Room 210 D

- Learn about recent advances and upcoming features in CUDA-
aware MVAPICH2-GPU library
• S5461 - Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with

InfiniBand
• Thursday, 03/19 (Today)
• Time: 17:00 -- 17:50
• Room 212 B

Two More Talks

30

GTC ’15

Contact
 panda@cse.ohio-state.edu

Thanks! Questions?

http://mvapich.cse.ohio-state.edu

http://nowlab.cse.ohio-state.edu

mailto:panda@cse.ohio-state.edu

	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30

