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• Accelerators are becoming common in high-end system architectures 
 
 
 
 
 
 
 
 

• Increasing number of workloads are being ported to take advantage of NVIDIA GPUs 
• As they scale to large GPU clusters with high compute density – higher the  synchronization 

and communication overheads – higher the penalty 
• Critical to minimize these overheads to achieve maximum performance 

 

Accelerator Era 

57% 
28% 

Top 100 – Nov 2014  
(28% use Accelerators) 57% use NVIDIA GPUs 
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• Programming models provide abstract machine models 
• Models can be mapped on different types of systems 

- e.g. Distributed Shared Memory (DSM), MPI within a node, etc. 
• Each model has strengths and drawbacks - suite different problems or applications 

 

Parallel Programming Models Overview 

P1 P2 P3 

Shared Memory 

P1 P2 P3 

Memory Memory Memory 

P1 P2 P3 

Memory Memory Memory 

Logical shared memory 

Shared Memory Model 

DSM 
Distributed Memory Model  

MPI (Message Passing Interface) 

Partitioned Global Address Space (PGAS) 

Global Arrays, UPC, Chapel, X10, CAF, … 
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• Overview of PGAS models (UPC and OpenSHMEM) 
• Limitations in PGAS models for GPU computing  
• Proposed Designs and Alternatives  
• Performance Evaluation   
• Exploiting GPUDirect RDMA 

Outline 



6 

GTC ’15 

• PGAS models, an attractive alternative to traditional message 
passing 

- Simple shared memory abstractions 

- Lightweight one-sided communication 

- Flexible synchronization 

• Different approaches to PGAS  

Partitioned Global Address Space (PGAS) Models 

- Libraries 
• OpenSHMEM 
• Global Arrays 
• Chapel 

 

- Languages  
• Unified Parallel C (UPC) 
• Co-Array Fortran (CAF) 
• X10 
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• SHMEM implementations – Cray SHMEM, SGI SHMEM, Quadrics SHMEM, HP SHMEM, 
GSHMEM 

• Subtle differences in API, across versions – example:  

                             SGI SHMEM            Quadrics SHMEM             Cray SHMEM  

Initialization        start_pes(0)                  shmem_init  start_pes    

Process ID              _my_pe                           my_pe                     shmem_my_pe 

• Made applications codes non-portable  

• OpenSHMEM is an effort to address this:  

“A new, open specification to consolidate the various extant SHMEM versions  
into a widely accepted standard.” – OpenSHMEM Specification v1.0 

by University of Houston and Oak Ridge National Lab 
SGI SHMEM is the baseline 

OpenSHMEM 
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• Defines symmetric data objects that are globally 
addressable  

- Allocated using a collective shmalloc routine 

- Same type, size and offset address at all 
processes/processing elements (PEs) 

- Address of a remote object can be calculated based on info 
of local object 

OpenSHMEM Memory Model 

Symmetric 
Object 

b 

b 

  PE 0   PE 1 

int main (int c, char *v[]) { 
    int *b; 
 
    start_pes();  
    b =  (int *) shmalloc (sizeof(int)); 
 
    shmem_int_get (b, b, 1 , 1); 
}                            (dst, src, count, 
pe)   

int main (int c, char *v[]) { 
    int *b; 
 
    start_pes();  
    b =  (int *) shmalloc (sizeof(int)); 
 

} 



9 

GTC ’15 

• UPC: a parallel extension to the C standard 
• UPC Specifications and Standards: 

- Introduction to UPC and Language Specification, 1999 

- UPC Language Specifications, v1.0, Feb 2001 

- UPC Language Specifications, v1.1.1, Sep 2004 

- UPC Language Specifications, v1.2, 2005 

- UPC Language Specifications, v1.3, In Progress - Draft Available 

• UPC Consortium 
- Academic Institutions: GWU, MTU, UCB, U. Florida, U. Houston, U. Maryland… 

- Government Institutions: ARSC, IDA, LBNL, SNL, US DOE… 

- Commercial Institutions: HP, Cray, Intrepid Technology, IBM, … 

• Supported by several UPC compilers 
- Vendor-based commercial UPC compilers: HP UPC, Cray UPC, SGI UPC 

- Open-source UPC compilers: Berkeley UPC, GCC UPC, Michigan Tech MuPC 

• Aims for: high performance, coding efficiency, irregular applications, … 

Compiler-based: Unified Parallel C 
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• Global Shared Space: can be accessed by all the threads  
• Private Space: holds all the normal variables; can only be accessed by the local thread 
• Example: 

 
 

UPC Memory Model 

Global Shared 
Space 

Private 

Space 

Thread 0 Thread 1 Thread 2 Thread 3 

y y y y 

A1[0] A1[1] A1[2] A1[3] 

shared int A1[THREADS];   //shared variable 
int main() { 
         int y;               //private variable 
         A1[0] = 0;      //local access 
         A1[1] = 1;      //remote access   
} 
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• Gaining attention in efforts towards Exascale computing 
 

• Hierarchical architectures with multiple address spaces 
• (MPI + PGAS) Model 

- MPI across address spaces 
- PGAS within an address space 

• MPI is good at moving data between address spaces 
• Within an address space, MPI can interoperate with other shared memory 

programming models  
 
• Re-writing complete applications can be a huge effort 
• Port critical kernels to the desired model instead 

MPI+PGAS for Exascale Architectures and Applications 
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• Application sub-kernels can be re-written in MPI/PGAS 
based on communication characteristics 
 

• Benefits: 
- Best of Distributed Computing Model 
- Best of Shared Memory Computing Model 
 

• Exascale Roadmap*:  
- “Hybrid Programming is a practical way to 

 program exascale systems” 
 
 

 

Hybrid (MPI+PGAS) Programming 

Kernel 1 
MPI 

Kernel 2 
MPI 

Kernel 3 
MPI 

Kernel N 
MPI 

HPC Application 

Kernel 2 
PGAS 

Kernel N 
PGAS 
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• Unified communication runtime for MPI, UPC, OpenSHMEM,CAF  available from MVAPICH2-X 1.9 : 
(09/07/2012) http://mvapich.cse.ohio-state.edu 

• Feature Highlights 
- Supports MPI(+OpenMP), OpenSHMEM, UPC, CAF, MPI(+OpenMP) + OpenSHMEM, MPI(+OpenMP) + UPC, 

MPI(+OpenMP) + CAF   

- MPI-3 compliant, OpenSHMEM v1.0 standard compliant, UPC v1.2 standard compliant, CAF 2015 standard 
compliant 

- Scalable Inter-node and intra-node communication – point-to-point and collectives 

• Effort underway for support on NVIDIA GPU clusters 

 

MVAPICH2-X for Hybrid MPI + PGAS Applications 

MPI, OpenSHMEM, UPC, CAF and  
Hybrid (MPI + PGAS) Applications 

Unified MVAPICH2-X Runtime 

InfiniBand, RoCE, iWARP 

OpenSHMEM Calls MPI Calls UPC Calls  CAF Calls  
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• Overview of PGAS models (UPC and OpenSHMEM) 
• Limitations in PGAS models for GPU computing  
• Proposed Designs and Alternatives  
• Performance Evaluation   
• Exploiting GPUDirect RDMA 

Outline 
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• PGAS memory models does not support disjoint memory address spaces - case with GPU 
clusters  

• OpenSHMEM case 

• Copies severely limit the performance  

 

 

 

 
 

 

• Synchronization negates the benefits of one-sided communication 

• Similar limitations in UPC 

Limitations of PGAS models for GPU Computing 

PE 0 

Existing OpenSHMEM Model with CUDA  

PE 1 

GPU-to-GPU 
Data Movement 

PE 0 

cudaMemcpy (host_buf, dev_buf,  . . . ) 
shmem_putmem (host_buf, host_buf, size, pe) 
shmem_barrier (…) 

host_buf = shmalloc (…) 

PE 1 

shmem_barrier ( . . . ) 
cudaMemcpy (dev_buf, host_buf, size, . . . ) 

host_buf = shmalloc (…) 
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• Overview of PGAS models (UPC and OpenSHMEM) 
• Limitations in PGAS models for GPU computing  
• Proposed Designs and Alternatives  
• Performance Evaluation   
• Exploiting GPUDirect RDMA 

Outline 
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Host Memory 

Private  

Shared 

Host Memory 

Device Memory Device Memory 

Private  

Shared 

Private  

Shared 

Private  

Shared 

shared space 
on host memory 

shared space 
on device memory 

N N 

N N 

Extended APIs: 
heap_on_device/heap_on_host 
a way to indicate location on heap 

Can be similar for dynamically allocated memory in UPC 

heap_on_device(); 
/*allocated on device*/ 
dev_buf  = shmalloc (sizeof(int)); 
 

heap_on_host(); 
/*allocated on host*/ 
host_buf  = shmalloc (sizeof(int)); 
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• After device memory becomes part of the global shared space: 
- Accessible through standard UPC/OpenSHMEM communication APIs 
- Data movement transparently handled by the runtime 
- Preserves one-sided semantics at the application level  

• Efficient designs to handle communication  
- Inter-node transfers use host-staged transfers with pipelining  
- Intra-node transfers use CUDA IPC 
- Possibility to take advantage of GPUDirect RDMA (GDR)  

 
• Goal: Enabling High performance one-sided communications 

semantics with GPU devices  

CUDA-aware OpenSHMEM and UPC runtimes 
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• Overview of PGAS models (UPC and OpenSHMEM) 
• Limitations in PGAS models for GPU computing  
• Proposed Designs and Alternatives  
• Performance Evaluation   
• Exploiting GPUDirect RDMA 

Outline 
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•  Small messages benefit from selective CUDA registration – 22% for 4Byte messages 

•  Large messages benefit from pipelined overlap – 28% for 4MByte messages 

S. Potluri, D. Bureddy, H. Wang, H. Subramoni and D. K. Panda, Extending OpenSHMEM for GPU Computing, Int'l Parallel 
and Distributed Processing Symposium (IPDPS '13) 

 

Shmem_putmem Inter-node Communication 
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•  Using IPC for intra-node communication   

•  Small messages – 3.4X improvement for 4Byte messages 

•  Large messages – 5X for 4MByte messages 

Shmem_putmem Intra-node Communication 

Small Messages Large Messages 
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Message Size (Bytes) 

5X 3.4X 

Based on MVAPICH2X-2.0b + Extensions 
Intel WestmereEP node with 8 cores 

2 NVIDIA Tesla K20c GPUs, Mellanox QDR HCA 
CUDA 6.0RC1 
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•  Modified SHOC Stencil2D kernel to use OpenSHMEM for cluster level parallelism 

•  The enhanced version shows 65% improvement on 192 GPUs  with 4Kx4K problem size/GPU 

•  Using OpenSHMEM for GPU-GPU communication allows runtime to optimize non-contiguous transfers   

Application Kernel Evaluation: Stencil2D 
 

0
5000

10000
15000
20000
25000
30000

512x512 1Kx1K 2Kx2K 4Kx4K 8Kx8K

To
ta

l E
xe

cu
tio

n 
Ti

m
e 

(m
se

c)
 

Problem Size/GPU 
(192 GPUs) 

0
2
4
6
8

10
12
14

48 96 192

 T
ot

al
 E

xe
cu

tio
n 

Ti
m

e 
(m

se
c)

 

Number of GPUs 
(4Kx4K problem/GPU) 

65% 



23 

GTC ’15 

•  Extended SHOC BFS kernel to run on a GPU cluster using a level-synchronized algorithm and 
OpenSHMEM 

•  The enhanced version shows up to 12% improvement on 96 GPUs, a consistent improvement in 
performance as we scale from 24 to 96 GPUs.  

Application Kernel Evaluation: BFS  
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• Overview of PGAS models (UPC and OpenSHMEM) 
• Limitations in PGAS models for GPU computing  
• Proposed Designs and Alternatives  
• Performance Evaluation   
• Exploiting GPUDirect RDMA 

Outline 
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• GDR for small/medium message sizes 
• Host-staging for large message to avoid PCIe 

bottlenecks 
• Hybrid design brings best of both 
• 3.13 us Put latency for 4B (6.6X improvement ) 

and 4.7 us latency for 4KB  
•  9X improvement for Get latency of 4B 

OpenSHMEM: Inter-node Evaluation  
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• GDR for small and medium message sizes 
• IPC for large message to avoid PCIe bottlenecks 
• Hybrid design brings best of both 
• 2.42 us Put D-H latency for 4 Bytes (2.6X improvement) and 3.92 us latency for 4 KBytes 
• 3.6X improvement for Get operation  
• Similar results with other configurations (D-D, H-D and D-H) 

OpenSHMEM: Intra-node Evaluation  
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- Input size 2K x 2K x 2K  
- Platform: Wilkes (Intel Ivy Bridge + NVIDIA Tesla K20c + Mellanox Connect-IB) 
- New designs achieve 20% and 19% improvements on 32 and 64 GPU nodes 
K. Hamidouche, A. Venkatesh, A. Awan, H. Subramoni, C. Ching and D. K. Panda, Exploiting GPUDirect RDMA in 
Designing High Performance OpenSHMEM  for GPU Clusters. (under review) 

 

OpenSHMEM: Stencil3D Application Kernel Evaluation  
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• PGAS models offers lightweight synchronization and one-sided 
communication semantics 

• Low-overhead synchronization is suited for GPU architecture 
• Extensions to the PGAS memory model to efficiently support CUDA-

Aware PGAS models.  
• High efficient GDR-based designs for OpenSHMEM  
• Plan on exploiting the GDR-based designs for UPC   
• Enhanced designs are planned to be incorporated into MVAPICH2-X     

Conclusions 
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- Learn more on how to combine and take advantage of Multicast 
and GPUDirect RDMA simultaneously  

•  S5507 – High Performance Broadcast with GPUDirect RDMA and InfiniBand 
 Hardware Multicast for Streaming Application  
•  Thursday, 03/19 (Today)    
•  Time: 14:00 --  14:25  
•  Room 210 D 

- Learn about recent advances and upcoming features in CUDA-
aware MVAPICH2-GPU library   
• S5461 - Latest Advances in MVAPICH2 MPI Library for NVIDIA GPU Clusters with 

InfiniBand 
• Thursday, 03/19 (Today) 
• Time: 17:00 -- 17:50  
• Room 212 B 

 

    
 

Two More Talks  
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Contact 
 panda@cse.ohio-state.edu 

 
 

Thanks! Questions? 

http://mvapich.cse.ohio-state.edu 
 

http://nowlab.cse.ohio-state.edu 
 

mailto:panda@cse.ohio-state.edu
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