Demonstrating Innovative Reservoir Modeling Workflows Enabled by a GPU-Accelerated Implicit Simulator

Dave Dembeck
Director, Software Engineering
Stone Ridge Technology

- First fine-grained implementation of petroleum reservoir simulator

- Talk focuses on implications of exceptional speed in workflows
Background: Reservoir Simulation

- Reservoir Simulation

- Generate a (predictive) model of production for economic recovery

- The workflow is more than just compute cycles...
Motivation for Compute Acceleration

- Unstructured grids; irregular memory access patterns

- Linear solver $\approx 80\%$ of total time, hundreds of other kernels

- Very many simulation realizations are required for most workflows
Algorithms Come First

- Choose the right GPU solvers (GAMPACK, AMGx)

<table>
<thead>
<tr>
<th>Method</th>
<th>GPU</th>
<th>CPU</th>
<th>Iterations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG Solver</td>
<td>24.6 s</td>
<td>246.6 s</td>
<td>4589</td>
</tr>
<tr>
<td>AMG Solver</td>
<td>0.7 s</td>
<td>5 s</td>
<td>8</td>
</tr>
</tbody>
</table>

- ...then confront Amdahl’s law directly to achieve >10x
Example Performance on Real Assets

<table>
<thead>
<tr>
<th>Model</th>
<th># cells</th>
<th>#CPU cores</th>
<th>#K40s</th>
<th>time</th>
<th>Speedup</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1.36M</td>
<td>32 (1)</td>
<td>2</td>
<td>26h/53m</td>
<td>45x</td>
</tr>
<tr>
<td>B</td>
<td>20M</td>
<td>48 (2)</td>
<td>8</td>
<td>14h/1.2h</td>
<td>12x</td>
</tr>
</tbody>
</table>

- **Total** application acceleration + better-suited solvers = >10x factor
- Validation within 1% of current commercial standard

![Graphs showing BHP and oil production rate over time.](https://www.stoneridgetechnology.com)
Example Problem

16M cells for 20 years @31 day intervals

Many uncertainties in model; want to explore them

40ft x 40ft x 4ft
12.2m x 12.2m x 1.2m
Example Problem

≈1.6km
≈3.2km

4 GPUS 20 MIN 32 X
Total Compute Time For Workflow

12 x E5-2687 VS 4 x K40s

45 d VS 1.5 d
Total Compute Cost For Workflow

CPU: $1.44/hr = $1536

GPU: $9.28/hr = $310

VS
Creating a Downstream Deluge

- 600 mins: commercial simulator runs once, creates 6 min of work

100:1

- 600 mins: our simulator runs 32 times, creates 192 mins of work

3:1
Everything new is newer again

- Total workflow acceleration from the ground-up...

68% : 32%
What Now?

- How can we deal with 100 files?
- How can we represent data in clear, compelling ways?
- How do we share and collaborate?
Implication for Workflow

- Loading a model grid can be painful - 109s for this model

- (Most) existing tools are not designed to (help you) work this way...

- Fundamentally : How can we help but stay out of the way?
Implication for Workflow

- Make choosing/loading many simulations easier

Simulation Ensembles

- 75/
 - 90.5 GB
 - Permian Wolfcamp Study - RSS Study
 - Asset #211A, Initial Project Evaluation
 - History-matched to scenario Alpha 2b, infills for region A & S, with schedule variants for wells #6A and #27B

- PERMIAN-RSS/
 - 22.2 GB

- SPE10-tuple/
 - 3.7 GB

www.stoneridgetechnology.com
Typical User Interface

- Legend clutter, disambiguation

- Lack of plot interactivity, traditional loading styles, anti-aliasing

- Can we make this accessible or (ideally) unnecessary?
Instead Consider…

- Provide a means to disambiguate large ensemble results
Clarity of Results

- Pixel vs vector plotting, anti-aliasing, interactivity
Typical Color Palette (Difference Plots)
Better Color Choices, Faster Interpretation
• Preserve local relative differences, design for color-blindness
Color Blindness: 8-12% Males

Tritanopia (blue deficiency)
Results Anywhere

- Distributed workload, remote clients, results anywhere

- Send colleagues an interactive graph; not static PDFs
A New Approach to Workflows

- Accelerated applications can cause post-processing data deluges

- Total application acceleration: new workflow/interaction challenges!

- We are re-thinking the way the tools behave, interact with GPU apps
Whole Systems Approach

- Key is understanding workflow impacts

- Fresh thinking on engineering tools around workflow optimization
The Team

Dave Dembeck
Ken Esler
Karthik Mukundakrishnan
Vincent Natoli (CEO)
John Shumway
Brad Suchowski
Yongpeng Zhang

ddembeck@stoneridgetechnology.com
www.linkedin.com/in/in/davedembeck
Image Credits

All black and white icons are made by FreePik.com from www.flaticon.com licensed by Creative Commons 3.0 license.

All other images have been generated by Stone Ridge Technology
Paul Tol’s work on palettes is a great resource!

Normal

Deuteranopia

Protanopia

Can choose colors such that printers can reproduce: ISO-12647-2
Slide Vault: Color is more than perception!

- Publication-quality figures need well-chosen color spaces

- What happens when great color figures are printed in B&W?