Justifying Reverse Time Migration Order of Accuracy on NVIDIA GPUs

Marcel Nauta
Software Developer, Acceleware
GPU Technology Conference
Date: March 19, 2015
About Acceleware

- **Accelerated software**
 - Forward Modeling
 - TTI Reverse Time Migration
 - Full Waveform Inversion

- **Software acceleration services**
 - Feasibility studies
 - Algorithm parallelization and code optimization
 - Migration of applications to heterogeneous platforms

- **Programmer training**
 - CUDA, OpenCL, OpenMP, MPI
Agenda

- Introduction to RTM
- RTM Grids and GPU Memory
- Implications of changing spatial and temporal order
- Discussion of trade-offs
Reverse Time Migration Algorithm

- Goal of RTM is to produce an image of the reflectors in the subsurface
- The most computationally expensive step is the 3D simulation of the wavefields
Effect of Spatial Order

- Sparser Grid
- Less Memory
- Less Points to update
Spatial Order Limitations

- For RTM, the propagation must always be upsampled to the imaging grid
- High orders of accuracy are more prone to subtraction (floating point) errors
- Spatial orders compared using equal phase velocity error (spatial dispersion)
Spatial Order Algorithm

- Every timestep is similar to filtering a 3D volume with the stencil below
Single Shot Example

- Memory for a single shot
 Isotropic RTM

- Higher orders converge towards Nyquist

*Based on output cells in the user space. Ignores partition and boundary halos.
Effect of Temporal Order

- Larger timestep
- Less iterations
Temporal Order Limitations

- Larger timestep means greater percentage of time is spent imaging

- Spatial orders compared using equal phase velocity error (temporal dispersion)

- 2nd order is always less accurate because timestep is limited by subtraction errors
Temporal Order Algorithm

- Fourth order in time requires 3 passes through the volume per timestep

There are also minor differences in illumination calculation and boundary conditions
CUDA Implementation

- Circular buffer of registers for slowest indexed axis
- Shared memory for fastest indexed axes
Shared Memory Loads

- Shared memory of a block, orange represents location of useful outputs
Shared Memory Loads

- Center of shared memory uses coalesced reads
Shared Memory Loads

- Halos in strided direction are coalesced
Shared Memory Loads

- Halos in unit stride direction are not coalesced
Shared Memory Loads

- Loading float2 reduces uncoalesced loads and the number of memory instructions
Loading With Float2

- Every CUDA thread must update 2 consecutive points
- Better memory access patterns
- Significantly increases register usage
Limiting Register Usage

- High register usage allows the compiler to unroll loops and reduce instruction counts

- Limiting register usage allows better occupancy

- Lower spatial orders can afford higher instruction counts
Benchmarking Variations

- End goal of RTM is to generate an image in the shortest possible time without compromising accuracy

- Benchmarked throughput time for a single shot with the same theoretical accuracy

- Tested various kernel parameters for each spatial order for each architecture
Benchmarking Variations

- **K80**
- **35 Hz**
- **14 x 28 x 12 km**
Benchmarking Variations

- K10
- 25 Hz
- 14 x 28 x 12 km

© 2015 Acceleware Ltd. Reproduction or distribution strictly prohibited.
K10 to K80 Speed up

- K10 simulates 25 Hz shot in 2.5 minutes
- K80 simulates 35 Hz shot in 4.4 minutes
- K80 is 2.23 times faster than K10
 - Correcting for fourth power scaling with frequency
 - Assuming linear scaling of K10s
Conclusions

- 16th order in space and 4th order in time is faster than 8th order in space 2nd order in time

- Increased register and shared memory on new GPUs is making higher orders more affordable

- K80s run 2.23 times faster than K10s if reoptimization is included
Questions?

Visit us at booth #612

Acceleware Ltd.
Tel: +1 403.249.9099
Email: services@acceleware.com

Website: http://acceleware.com

Marcel Nauta
marcel.nauta@acceleware.com