Recovering Structural Information about Nanoparticle Systems

Abhinav Sarje

Computational Research Division
Lawrence Berkeley National Laboratory

03.19.15
GPU Technology Conference 2015
San Jose, CA
Nanoparticle Systems

- Materials (natural or artificial) made up of nanoparticles.
- Sizes ranging from 1 nanometer to 1000s nanometers.
- Wide variety of applications in optical, electronic and biomedical fields. E.g.:
 - Inorganic nanomaterials in optoelectronics.
 - Organic material based nano-devices such as Organic Photovoltaics (OPVs), OLEDs.
 - Chemical catalysts, drug design and discovery, biological process dynamics.

Importance of structural information:

- Nanomaterials exhibit shape and size-dependent properties, unlike bulk materials which have constant physical properties regardless of size.
- Nanoparticle characterization is necessary to establish understanding and control of material synthesis and applications.
Nanoparticle Systems

- Materials (natural or artificial) made up of nanoparticles.
- Sizes ranging from 1 nanometer to 1000s nanometers.
- Wide variety of applications in optical, electronic and biomedical fields. E.g.:
 - Inorganic nanomaterials in optoelectronics.
 - Organic material based nano-devices such as Organic Photovoltaics (OPVs), OLEDs.
 - Chemical catalysts, drug design and discovery, biological process dynamics.

Importance of structural information:

- Nanomaterials exhibit shape and size-dependent properties, unlike bulk materials which have constant physical properties regardless of size.
- Nanoparticle characterization is necessary to establish understanding and control of material synthesis and applications.
Measuring Structural Information at Nano-scale

- Electron microscopy (TEM, SEM),
- atomic force microscopy (AFM),
- X-ray photoelectron spectroscopy (XPS),
- X-ray diffraction (XRD),
- X-ray scattering,
- and more.

X-ray scattering:
- Determine the size distribution profile of nanoparticles in suspension or polymers in solution.
- Probe the behavior of complex fluids such as polymer solutions.
- Probe structures of non-crystalline thin-film materials.

Examples:
- Small-Angle X-ray Scattering (SAXS)
- Grazing-Incidence SAXS (GISAXS)
Measuring Structural Information at Nano-scale

- Electron microscopy (TEM, SEM),
- atomic force microscopy (AFM),
- X-ray photoelectron spectroscopy (XPS),
- X-ray diffraction (XRD),
- **X-ray scattering**,
- and more.

X-ray scattering:
- Determine the size distribution profile of nanoparticles in suspension or polymers in solution.
- Probe the behavior of complex fluids such as polymer solutions.
- Probe structures of non-crystalline thin-film materials.

Examples:
- Small-Angle X-ray Scattering (SAXS)
- Grazing-Incidence SAXS (GISAXS)
X-ray Scattering at Synchrotrons

X-Ray Scattering: Examples
X-Ray Scattering: Complex Examples

Gratings

Organic Photovoltaics

Real Sample

Model

Scattering Pattern
Computational Problems in Structure Recovery: Inverse Modeling

Start

Initial guess
Computational Problems in Structure Recovery: Inverse Modeling

Start

Initial guess

forward simulation
Computational Problems in Structure Recovery: Inverse Modeling

Start

Initial guess

forward simulation

compute error w.r.t. experimental data
Computational Problems in Structure Recovery: Inverse Modeling

Start

Initial guess

forward simulation

compute error w.r.t. experimental data

tune model parameters
Computational Problems in Structure Recovery: Inverse Modeling

Start

Initial guess

forward simulation

compute error w.r.t. experimental data

tune model parameters
Computational Problems in Structure Recovery: Inverse Modeling

Start

Initial guess

forward simulation

compute error w.r.t. experimental data

tune model parameters

End
Need for High-Performance Computing

Data generation and analysis gap:

- High measurement rates of current state-of-the-art light beam detectors.
- Wait for days for analyzing data with previous softwares.
- Extremely inefficient utilization of facilities due to mismatch.
- *Example:* 100 MB raw data per second. Up to 12 TB per week.
Need for High-Performance Computing

High computational and accuracy requirements:

• Errors are proportional to the resolutions of various computational discretization.

• Higher resolutions require higher computational power.

• Example:
 • $O(10^7)$ to $O(10^{15})$ kernel computations for one simulation.
 • $O(10^2)$ experiments per material sample.
 • $O(10)$ to $O(10^3)$ forward simulations for inverse modeling per scattering pattern.
Need for High-Performance Computing

Science Gap:

- Beam-line scientists lack access to high-performance algorithms and codes.
- In-house developed codes limited in compute capabilities and performance.
- Also, they are extremely slow – wait for days and weeks to obtain basic results.
Forward Simulations: Computing Scattered Light Intensities

Given:
1. a sample structure model, and
2. experimental configuration,
simulate scattering patterns.

Based on *Distorted Wave Born Approximation* (DWBA) theory.
Inverse Modeling

Forward simulation kernel: computing the scattered light intensities. E.g.

- FFT computations (SAXS)
- Complex form factor and structure factor computations (GISAXS)

Various inverse modeling algorithms:

- Reverse Monte-Carlo simulations for SAXS.
- Sophisticated optimization algorithms for GISAXS.
 - Gradient based: LMVM (Limited-Memory Variable-Metric.)
 - Derivative-free trust region-based: POUNDerS.
 - Stochastic: Particle Swarm Optimization.
Inverse Modeling

Forward simulation kernel: computing the scattered light intensities. E.g.
- FFT computations (SAXS)
- Complex form factor and structure factor computations (GISAXS)

Various inverse modeling algorithms:
- **Reverse Monte-Carlo simulations for SAXS.**
- **Sophisticated optimization algorithms for GISAXS.**
 - *Gradient based:* LMVM (Limited-Memory Variable-Metric.)
 - *Derivative-free trust region-based:* POUNDerS.
 - *Stochastic:* Particle Swarm Optimization.
Reverse Monte Carlo Simulations

Initial model (random) → FFT → Experimental Structure Factor

Accept or reject move

Compute χ²-error

Move particle at random

FFT
Reverse Monte Carlo Simulations: Validation

Actual Models
Reverse Monte Carlo Simulations: Validation

Actual Models

Initial Models
Reverse Monte Carlo Simulations: Validation

Actual Models

Initial Models

Recovered Models
Reverse Monte Carlo Simulations: Strong and Weak Scaling

Titan

Hopper

asarje@lbl.gov Lawrence Berkeley National Laboratory
Limited-Memory Variable-Metric and POUNDerS

- Methods from the optimization package TAO.
- LMVM is a gradient-based method.
- POUNDerS is a derivative-free trust-region-based method.
Limited-Memory Variable-Metric and POUNDerS: Two Parameter Case

A Single Cylindrical Nanoparticle
Limited-Memory Variable-Metric and POUNDerS: Two Parameter Case

A Single Cylindrical Nanoparticle

X-Ray Scattering Pattern
Limited-Memory Variable-Metric and POUNDerS: Two Parameter Case

A Single Cylindrical Nanoparticle

X-Ray Scattering Pattern

Objective Function Map
Limited-Memory Variable-Metric and POUNDerS: Two Parameter Case

A Single Cylindrical Nanoparticle

X-Ray Scattering Pattern

Objective Function Map

LMVM Convergence Map

POUNDerS Convergence Map
Limited-Memory Variable-Metric and POUNDerS: Six Parameter Case

Pyramidal Nanoparticles forming a Lattice
Limited-Memory Variable-Metric and POUNDerS: Six Parameter Case

Pyramidal Nanoparticles forming a Lattice

X-Ray Scattering Pattern
Limited-Memory Variable-Metric and POUNDerS: Six Parameter Case

Pyramidal Nanoparticles forming a Lattice

X-Ray Scattering Pattern

Objective Function Map
Limited-Memory Variable-Metric and POUNDerS: Six Parameter Case

Pyramidal Nanoparticles forming a Lattice

X-Ray Scattering Pattern

Objective Function Map

LMVM does not converge

POUNDerS Convergence Map
Particle Swarm Optimization

- Stochastic method.
- Multiple agents, “particle swarm”, search for optimal points in the parameter space.
- Agent velocities influenced by history of traveled paths.
Particle Swarm Optimization

- Stochastic method.
- Multiple agents, “particle swarm”, search for optimal points in the parameter space.
- Agent velocities influenced by history of traveled paths.

\[
\vec{v}_i \leftarrow \omega \vec{v}_i + (\vec{b}_i - \vec{x}_i) r_1 \phi_1 + (\vec{b}_g - \vec{x}_i) r_2 \phi_2
\]
Particle Swarm Optimization: Fitting X-Ray Scattering Data

Fitting 2 Parameters

Fitting 6 Parameters
Particle Swarm Optimization: Performance

Convergence w.r.t. Search Space Volume

Strong Scaling on Titan
Particle Swarm Optimization: Agents vs. Generations

![Graph showing the relationship between Relative Error and Generation for different numbers of agents.](image)
An Ongoing Work

We saw that:

- Derivative-based methods converge only for simple cases.
- Trust-region-based methods are very sensitive to initial guess.
- PSO is robust, nearly always converging, but expensive.
- Need better optimization algorithms.
An Ongoing Work

We saw that:

- Derivative-based methods converge only for simple cases.
- Trust-region-based methods are very sensitive to initial guess.
- PSO is robust, nearly always converging, but expensive.
- Need better optimization algorithms.

Near future:

- GPUs have brought data analysis time from days and weeks to just minutes and seconds.
- Opening gates to much more sophisticated analyses.
- We are applying Deep Learning for feature and structural classification to generate initial models to fit.
- Our codes are already being used at various synchrotrons world-wide.
Our Current Team

- **Alexander Hexemer**, *Advanced Light Source, Berkeley Lab*.
- **Dinesh Kumar**, *Advanced Light Source, Berkeley Lab*.
- **Xiaoye S. Li**, *Computational Research Division, Berkeley Lab*.
- **Abhinav Sarje**, *Computational Research Division, Berkeley Lab*.
- **Singanallur Venkatakrishnan**, *Advanced Light Source, Berkeley Lab*.
Our Current Team

- **Alexander Hexemer**, *Advanced Light Source, Berkeley Lab*.
- **Dinesh Kumar**, *Advanced Light Source, Berkeley Lab*.
- **Xiaoye S. Li**, *Computational Research Division, Berkeley Lab*.
- **Abhinav Sarje**, *Computational Research Division, Berkeley Lab*.
- **Singanallur Venkatakrishnan**, *Advanced Light Source, Berkeley Lab*.

And we are open for collaborations ...
Acknowledgments

• Thanks to NVIDIA for donating several GPU cards to make this possible.

• Supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

• Also supported by DoE Early Career Research grant awarded to Alexander Hexemer.

• Used resources of the National Energy Research Scientific Computing Center, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

• Used resources of the Oak Ridge Leadership Computing Facility at the Oak Ridge National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC05-00OR22725.
Thank you!

Contact: asarje@lbl.gov

Code: http://portal.nersc.gov/project/als/hipgisaxs