Kokkos, Manycore Device Performance Portability for C++ HPC Applications

H. Carter Edwards and Christian Trott
Sandia National Laboratories

GPU TECHNOLOGY CONFERENCE 2015
MARCH 16-20, 2015 | SAN JOSE, CALIFORNIA

SAND2015-1885C (Unlimited Release)
What is “Kokkos”?

- **ΚÓΚΚΟΣ** (Greek)
 - Translation: “granule” or “grain” or “speck”
 - Like grains of salt or sand on a beach

- **Programming Model Abstractions**
 - Identify / encapsulate grains of data and parallelizable operations
 - Aggregate these grains with data structure and parallel patterns
 - Map aggregated grains onto memory and cores / threads

- **An Implementation of the Kokkos Programming Model**
 - Sandia National Laboratories’ open source C++ library
Outline

- Core Abstractions and Capabilities
 - Performance portability challenge: memory access patterns
 - Layered C++ libraries
 - Spaces, policies, and patterns
 - Polymorphic multidimensional array
 - Easy parallel patterns with C++11 lambda
 - Managing memory access patterns
 - Atomic operations
 - Wrap up

- Portable Hierarchical Parallelism

- Initial Scalable Graph Algorithms

- Conclusion
Performance Portability Challenge:

Best (decent) performance requires computations to implement architecture-specific memory access patterns

- CPUs (and Xeon Phi)
 - Core-data affinity: consistent NUMA access (first touch)
 - Array alignment for cache-lines and vector units
 - Hyperthreads’ cooperative use of L1 cache

- GPUs
 - Thread-data affinity: coalesced access with cache-line alignment
 - Temporal locality and special hardware (texture cache)

- Array of Structures (AoS) vs. Structure of Arrays (SoA) dilemma
 - i.e., architecture specific data structure layout and access

This has been the *wrong* concern

The right concern: Abstractions for Performance Portability?
Kokkos’ Performance Portability Answer

Integrated mapping of thread parallel computations and multidimensional array data onto manycore architecture

1. Map user’s parallel computations to threads
 - Parallel pattern: foreach, reduce, scan, task-dag, ...
 - Parallel loop/task body: C++11 lambda or C++98 functor

2. Map user’s datum to memory
 - Multidimensional array of datum, *with a twist*
 - Layout : multi-index (i,j,k,...) ↔ memory location
 - Kokkos *chooses* layout for architecture-specific memory access pattern
 - Polymorphic multidimensional array

3. Access user datum through special hardware (bonus)
 - GPU texture cache to speed up read-only random access patterns
 - Atomic operations for thread safety
Layered Collection of C++ Libraries

- Standard C++, Not a language extension
 - Not a language extension: OpenMP, OpenACC, OpenCL, CUDA
 - In spirit of Intel’s TBB, NVIDIA’s Thrust & CUSP, MS C++AMP, ...
- Uses C++ template meta-programming
 - Previously relied upon C++1998 standard
 - Now require C++2011 for lambda functionality
 - Supported by Cuda 7.0; full functionality in Cuda 7.5
 - Participating in ISO/C++ standard committee for core capabilities
Abstractions: **Spaces, Policies, and Patterns**

- **Memory Space**: where data resides
 - Differentiated by performance; e.g., size, latency, bandwidth

- **Execution Space**: where functions execute
 - Encapsulates hardware resources; e.g., cores, GPU, vector units, ...
 - Denote accessible memory spaces

- **Execution Policy**: how (and where) a user function is executed
 - E.g., data parallel range: concurrently call function(i) for i = [0..N)
 - User’s function is a C++ functor or C++11 lambda

- **Pattern**: parallel_for, parallel_reduce, parallel_scan, task-dag, ...

- **Compose**: pattern + execution policy + user function; e.g.,

  ```
  parallel_pattern( Policy<Space>, Function);
  ```

 - Execute *Function* in *Space* according to *pattern* and *Policy*

- Extensible spaces, policies, and patterns
Examples of Execution and Memory Spaces

Compute Node

- Multicore Socket
 - primary
- DDR

Attached Accelerator

- GPU
 - shared
- GDDR

Deep copy

Compute Node

- Multicore Socket
 - primary
- DDR

Attached Accelerator

- GPU
 - shared
- GDDR

GPU::capacity (via pinned)

GPU::perform (via UVM)
Polymorphic Multidimensional Array View

- View< double**[3][8] , Space > a("a",N,M);
 - Allocate array data in memory Space with dimensions [N][M][3][8]
 - C++17 improvement to allow View<double[][][3][8],Space>

 - a(i,j,k,l) : User’s access to array datum
 - “Space” accessibility enforced; e.g., GPU code cannot access CPU memory
 - Optional array bounds checking of indices for debugging

- View Semantics: View<double**[3][8],Space> b = a ;
 - A shallow copy: ‘a’ and ‘b’ are pointers to the same allocated array data
 - Analogous to C++11 std::shared_ptr

- deep_copy(destination_view , source_view);
 - Copy data from ‘source_view’ to ‘destination_view’
 - Kokkos policy: never hide an expensive deep copy operation
Polymorphic Multidimensional Array Layout

- **Layout** mapping: \(a(i,j,k,l) \rightarrow \) memory location
 - Layout is polymorphic, defined at compile time
 - Kokkos chooses default array layout appropriate for “Space”
 - E.g., row-major, column-major, Morton ordering, dimension padding, ...

- User can specify Layout: `View< ArrayType, Layout, Space >`
 - Override Kokkos’ default choice for layout
 - Why? For compatibility with legacy code, algorithmic performance tuning, ...

- Example Tiling Layout
 - `View<double**,Tile<8,8>,Space> m(“matrix”,N,N);`
 - Tiling layout transparent to user code: \(m(i,j) \) unchanged
 - Layout-aware algorithm extracts tile subview
Multidimensional Array Subview & Attributes

- Array subview of array view (new)
 - Y = subview(X, ...ranges_and_indices_argument_list...);
 - View of same data, with the appropriate layout and index map
 - Each index argument eliminates a dimension
 - Each range [begin,end) argument contracts a dimension

- Access intent Attributes

  ```
  View< ArrayType, Layout, Space, Attributes >
  ```
 - How user intends to access datum
 - Example, View with const and random access intension
 - View< double **, Cuda > a("mymatrix", N, N);
 - View< const double **, Cuda, RandomAccess > b = a;
 - Kokkos implements b(i,j) with GPU texture cache
Multidimensional Array functionality being considered by ISO/C++ standard committee

- TBD: add layout polymorphism – a critical capability
 - To be discussed at May 2015 ISO/C++ meeting

- TBD: add explicit (compile-time) dimensions
 - Minor change to core language to allow: `T[i][j][3][8]`
 - Concern: performance loss when restricted to implicit (runtime) dimensions

- TBD: use simple / intuitive array access API: `x(i,j,k,l)`
 - Currently considering: `x[{i,j,k,l}]`
 - Concern: performance loss due to intermediate initializer list

- TBD: add shared pointer (std::shared_ptr) semantics
 - Currently merely a wrapper on user-managed memory
 - Concern: coordinating management of view and memory lifetime
Easy Parallel Patterns with C++11 and Defaults

default_pattern(Policy<Space> , UserFunction)

- Easy example BLAS-1 AXPY with views
  ```cpp
default_for( N , KOKKOS_LAMBDA( int i ){ y(i) = a * x(i) + y(i); } );
```
- Default execution space chosen for Kokkos installation
- Execution policy “N” => RangePolicy<DefaultSpace>(0,N)
- `#define KOKKOS_LAMBDA [=]/* non-Cuda */`
- `#define KOKKOS_LAMBDA [=]__device__ /* Cuda 7.5 candidate feature */`
 - Tell NVIDIA Cuda development team you like and want this in Cuda 7.5!

- More verbose without lambda and defaults:
  ```cpp
  struct axpy_functor {
    View<double*,Space> x , y ; double a ;
    KOKKOS_INLINE_FUNCTION
    void operator()( int i ) const { y(i) = a * x(i) + y(i); }
    // ... constructor ...
  };  
  parallel_for( RangePolicy<Space>(0,N) , axpy_functor(a,x,y) );
  ```
Kokkos Manages Challenging Part of Patterns’ Implementation

- **Example: DOT product reduction**
  ```cpp
  parallel_reduce( N , KOKKOS_LAMBDA( int i , double & value )
                  { value += x(i) * y(i); }
                  , result );
  ```

- **Challenges:** temporary memory and inter-thread reduction operations
 - Cuda shared memory for inter-warp reductions
 - Cuda global memory for inter-block reductions
 - Intra-warp, inter-warp, and inter-block reduction operations

- **User may define reduction type and operations**
  ```cpp
  struct my_reduction_functor {
    typedef ... value_type ;
    KOKKOS_INLINE_FUNCTION void join( value_type&, const value_type&) const ;
    KOKKOS_INLINE_FUNCTION void init( value_type& ) const ;
  };
  ```
 - ‘value_type’ can be runtime-sized one-dimensional array
 - ‘join’ and ‘init’ plugged into inter-thread reduction algorithm
Managing Memory Access Pattern:

Compose Parallel Execution ○ Array Layout

- **Map Parallel Execution**
 - Maps calls to function(iw) onto threads
 - GPU: iw = threadIdx + blockDim * blockIds
 - CPU: iw ∈ [begin, end)ₜₜh ; contiguous partitions among threads

- **Choose Multidimensional Array Layout**
 - Leading dimension is parallel work dimension
 - Leading multi-index is ‘iw’ : a(iw , j, k, l)
 - Choose appropriate array layout for space’s architecture
 - E.g., AoS for CPU and SoA for GPU

- **Fine-tune Array Layout**
 - E.g., padding dimensions for cache line alignment
Performance Impact of Access Pattern

- Molecular dynamics computational kernel in miniMD
- Simple Lennard Jones force model:
 \[F_i = \sum_{j, r_{ij} < r_{cut}} 6 \varepsilon \left(\frac{s}{r_{ij}} \right)^7 - 2 \left(\frac{s}{r_{ij}} \right)^{13} \]
- Atom neighbor list to avoid N^2 computations

\[
\text{pos}_i = \text{pos}(i);
\text{for}(\text{jj} = 0; \text{jj} < \text{num_neighbors}(i); \text{jj}++) \{
 j = \text{neighbors}(i,\text{jj});
 r_{ij} = \text{pos}_i - \text{pos}(j); //\text{random read 3 floats}
 \text{if} (|r_{ij}| < r_{cut}) f_i += 6\varepsilon*(s/r_{ij})^7 - 2*(s/r_{ij})^{13}
\}
\]

\[f(i) = f_i; \]

- Test Problem
 - 864k atoms, ~77 neighbors
 - 2D neighbor array
 - Different layouts CPU vs GPU
 - Random read ‘pos’ through GPU texture cache
- Large performance loss with wrong array layout

![Graph showing performance comparison between correct and wrong layouts on different hardware]
Atomic operations

atomic_exchange, atomic_compare_exchange_strong, atomic_fetch_add, atomic_fetch_or, atomic_fetch_and

- Thread-scalability of non-trivial algorithms and data structures
 - Essential for lock-free implementations
 - Concurrent summations to shared variables
 - E.g., finite element computations summing to shared nodes
 - Updating shared dynamic data structure
 - E.g., append to a shared array or insert into a shared map

- Portably map to compiler/hardware specific capabilities
 - GNU and CUDA extensions when available
 - Current: any 32bit or 64bit type, may use CAS-loop implementation

- ISO/C++ 2011 and 2014 atomics not adequate for HPC
 - Proposed necessary improvements for C++17
Thread-Scalable Fill of Sparse Linear System

- **MiniFENL**: Newton iteration of FEM: \(x_{n+1} = x_n - J^{-1}(x_n)r(x_n) \)
- **Fill sparse matrix via Scatter-Atomic-Add or Gather-Sum?**
 - **Scatter-Atomic-Add**
 - + Simpler
 - + Less memory
 - – Slower HW atomic
 - **Gather-Sum**
 - + Bit-wise reproducibility
 - **Performance win?**
 - Scatter-atomic-add
 - ~equal Xeon PHI
 - 40% faster Kepler GPU

✔ **Pattern chosen**
 - Feedback to HW vendors: performant atomics
Core Abstractions and Capabilities (wrap up)

- **Abstractions**
 - Identify / encapsulate grains of data and parallelizable operations
 - Aggregate these grains with data structure and parallel patterns
 - Map aggregated grains onto memory and cores / threads

- **Grains and Patterns**
 - Parallelizable operation: C++11 lambda or C++98 functor
 - Parallel pattern: foreach, reduce, scan, task-dag, ...
 - Multidimensional array of datum
 - Atomic operations

- **Extensible Mappings**
 - Polymorphic multidimensional array: space, layout, access intentions
 - Execution policy: where and how to execute

- Next Step: Finer Grain Parallelism with Hierarchical Patterns
 - Κόκκος: “like grains of sand on a beach” – how fine can we go?
Outline

- Core Abstractions and Capabilities
- Portable Hierarchical Parallelism
 - Two-level thread-team execution policy and nested parallel patterns
 - Thread-team shared memory
 - Three-level execution policy
 - Application to molecular dynamics kernels
 - Application to tensor mathematics kernels
- Initial Scalable Graph Algorithms (very new)
- Conclusion
Thread Team Execution Policy

- Expose and map more parallelism

Vocabulary
- OpenMP: League of Teams of Threads
- Cuda: Grid of Blocks of Threads

Thread Team Functionality
- Threads within a team execute concurrently
- Teams do not execute concurrently
- Nested parallel patterns: foreach, reduce, scan
- Team-shared scratch memory

Thread Team Portability: map onto hardware
- Cuda: team == thread block, possibly a sub-block group of warps
- Xeon Phi: team == hyperthreads sharing L1 cache
- CPU: team == thread
Thread Team Example:
Sparse Matrix-Vector Multiplication

- Traditional serial compressed row storage (CRS) algorithm:

  ```c
  for ( int i = 0 ; i < nrow ; ++i )
    for ( int j = irow(i) ; j < irow(i+1) ; ++j )
      y(i) += A(j) * x( jcol(j) );
  ```

- Thread team algorithm, using C++11 lambda

  ```c
  typedef TeamPolicy<Space> policy ;
  parallel_for( policy( nrow /* #leagues */ ),
    KOKKOS_LAMBDA( policy::member_type const & member ) { 
      double result = 0 ;
      const int i = member.league_rank();
      parallel_reduce( TeamThreadRange(member,irow(i),irow(i+1)),
        [&]( int j , double & val ) { val += A(j) * x(jcol(j));},
        result );
      if ( member.team_rank() == 0 ) y(i) = result ;
    });
  ```
Thread Team Shared Scratch Memory

- **Challenges**
 - Multiple arrays residing in shared scratch memory
 - Arrays may have runtime dimensions
 - Arrays’ dimensions possibly dependent upon team size

- **Approach: reuse Kokkos abstractions**
 - Shared scratch **Memory Space of the Execution Space**
 - Manage array with a **View** defined on this space
 - Thread team executing in the execution space is given an instance of the associated shared scratch memory space

- **Capability available via user defined functor**
 - Typically need richer information than C++11 lambda can provide
 - ... example ...
Team Shared Scratch Memory Example

```cpp
struct my_functor {
  typedef TeamPolicy<ExecutionSpace> Policy;
  typedef ExecutionSpace::scratch_memory_space Scratch;
  typedef View<double**, Scratch, MemoryUnmanaged> SharedView;
  SharedView x, y;
  int nx, ny;

  KOKKOS_INLINE_FUNCTION
  void operator()( Policy::member_type const & member ) const
  {
    Scratch shmem_space = member.team_shmem();
    x( shmem_space, member.team_size(), nx );
    y( shmem_space, member.team_size(), ny );
    // ... team fill of arrays ...
    member.team_barrier();
    // ... team computations on arrays ...
    member.team_barrier();
  }

  // Query shared memory size before parallel dispatch:
  size_t team_shmem_size( int team_size ) const { 
    return SharedView::shmem_size( team_size, nx ) +
            SharedView::shmem_size( team_size, ny );
  }
};
```
Thread Team Execution Policy, 3rd Level

- Add third level of Vector parallelism
 - Map algorithm’s thread teams onto hardware resources
 - Cuda: “thread” == warp, “vector lane” == thread of warp
 - Xeon Phi: “thread” == hyperthread, “vector lane” == SSE or AVX lane

- Vector parallelism functionality
 - Vector lanes execute lock-step concurrently
 - Consistent parallel patterns at vector level: foreach, reduce, scan
 - New “single” pattern denoting only one vector lane performs operation

- **Portably** covering all levels used in sophisticated Cuda kernels

- C++11 lambda necessary for usability
 - Vector parallel lambdas nested within team parallel lambdas
 - Fortunately Cuda 6.5 supports C++ lambda within device kernels!
Application to Molecular Dynamics Kernel

Atom Neighbor List Construction
- atom ids stored in a Cartesian grid (XYZ) locality-bin data structure
- atoms sorted by locality -> Non-Team algorithm has good cache efficiency
- using teams and shared memory to improve cache efficiency on GPU
- a team works on a set of neighboring bins, 1 bin per thread in the team

Non-Team Algorithm

```c
parFor i in natoms {
    n = 0
    bin_idx = bin_of(i);
    for bin in stencil(bin_idx) {
        for j in bin_atom_ids(bin) {
            if( distance(i,j) < cut ) neighbor(i,n++) = j;
        }
    }
}
```

Team Algorithm

```c
parForTeam base_bins in bins {
    copy_to_shared(base_bins,shared_base_bins)
    for bin_row in YZ_part_of(base_bins) {
        copy_to_shared(bin_row,shared_bin_row)
        parForTeam i in bin_atom_ids(shared_base_bins) {
            parForVector i in bin_atom_ids(shared_base_bins) {
                for j in bin_atom_ids(shared_bin_row) {
                    if( distance(i,j) < cut ) neighbor(i,n++) = j;
                }
            }
        }
    }
}
```

- Previously a Cuda-specialized implementation
- Now a portable implementation
Performance of a Complete Simulation Step

- Timing data for isolated kernel not available
- Comparing compute nodes of roughly equivalent power
 - 1/2 of K80 (i.e. one of the two GPUs on the board)
 - 2 Sockets of 8 Core Sandy Bridge with 2 wide SMT
 - 2 Sockets of 10 Core Power 8 chips with 8 wide SMT
- CPUs using Team-Size 1
- GPUs using Team-Size 2x32
Application to Tensor Math Library Kernels

- Performed through Harvey Mudd College clinic program
 - Advisor/Professor: Jeff Amelang
 - Undergraduate team: Brett Collins, Alex Gruver, Ellen Hui, Tyler Marklyn

- Project: re-engineer serial kernels to use Kokkos
 - Initially using “flat” range policy
 - Progressing to thread team policy for appropriate kernels
 - Several candidate kernels for team parallelism, results for:
 - Multi-matrix multiply: \(\forall (c, d, e): V(c, d, e) = \sum_p A(c, p, d) \ast B(c, p, e) \)

- Thread team
 - Outer (league level) parallel_for over dimension ‘c’
 - Inner (team level) parallel_reduce over summation dimensions \(p \)
 - Inner (team level) parallel_for over tensor dimensions \(d, e \)
Application to Tensor Math Library Kernels

- Performance of “multi-matrix multiply” tensor contraction
 - $\forall (c, d, e): V(c, d, e) = \sum_{p} A(c, p, d) \ast B(c, p, e)$
 - $d = e = 6$, symmetric tensor
 - $p = 27$ point numerical integration of a hexahedral cell
 - $c = \#$ cells

![Graph showing speed up comparison between different architectures](image-url)

- Team-synchronization overhead with nested parallelism
- More parallelism available to map
Outline

- Core Abstractions and Capabilities
- Portable Hierarchical Parallel Execution Policies
- Initial Scalable Graph Algorithms
 - Construction of sparse matrix graph from finite element mesh
 - Breadth first search of highly variable degree graph
- Conclusion
Thread-Scalable Construction of Sparse Matrix Graph from Finite Element Mesh

- Given Finite Element Mesh Connectivity
 - \{ element → \{ nodes \} \}
 - View\langle int*[8], Space\rangle element_node ;

- Generate node→node graph
 - Compressed sparse row data structure
 - \{(node, column(j)) : ∀ j ∈ [irow(node) ... irow(node + 1)), ∀ node\}
 - node = node index, irow = offset array, column(j) = connected node index

- Challenges
 - Determine unique node-node entries given redundant entries
 - \{ element → \{ nodes \} \} have shared faces and edges
 - Unknown number of node-node entries
 - Upper bound \(N^2\) is too large to allocate
Thread-Scalable Construction of Sparse Matrix Graph from Finite Element Mesh

1. **Parallel-for**: fill **Kokkos lock-free unordered map** with node-node pairs
 - `{ element → { nodes } }`: foreach element, foreach pair of nodes
 - Successful insert → atomic increment node’s column counts

2. **Parallel-scan**: sparse matrix rows’ column counts generates row offsets
 - Last entry is total count of unique node-node pairs

3. Allocate sparse matrix column-index array

4. **Parallel-for**: query unordered map to fill sparse matrix column-index array
 - foreach entry in unordered map of node-node pairs

5. **Parallel-for**: sort rows’ column-index subarray

![Graph showing microsec/node vs. number of finite element nodes for different platforms: Phi-60, Phi-240, and K40X.](graph.png)
Breadth First Search of Graph with Highly Varied Degree Vertices

- Porting portions of MTGL to GPU via Kokkos
 - MTGL: Sandia’s multithreaded graph library
 - Internal laboratory directed research & development (LDRD) project
 - Sandia collaborators: Jonathan Berry and Greg Mackey

- Evaluate suitability of Kokkos and GPU for graph algorithms
 - MTGL previously threaded for CPU via Qthreads
 - Ease and performance of layering MTGL on Kokkos?
 - Performance of MTGL algorithms on GPU?
Breadth First Search of Graph with Vertices of Highly Varying Degree

- Iterative frontier-advancing algorithm (*conceptually* simple)
 - Given a frontier set of vertices
 - Foreach edge associated with each vertex in the frontier
 if edge’s other vertex has not been visited, add to next frontier

- Challenges for thread-scalability
 - Maximizing parallelism in “foreach edge of each frontier vertex”
 - Removing load imbalance in “foreach edge of each frontier vertex”
 - Set of edges will not fit in GPU memory (set of vertices will fit)
 - Concurrent growth of global frontier set

- Strategy for thread-scalability
 - Manhattan loop collapse* of “foreach edge of each frontier vertex”
 - Thread-Team coordinated growth of global frontier set

* technique used in Cray and LLVM compilers
Breadth First Search Algorithm

Graph implemented via compressed sparse row (CSR) scheme

\[\{(v, edge(j)) : \forall j \in [irow(v) ... irow(v + 1)), \forall v\} \]

- \(v = \) vertex index, \(irow = \) offset array, \(edge(j) = \) subarray of paired vertices

Given search result array of vertices : search(*)

- \([0..a) = \) vertex indices accumulated from previous search iteration
- \([a..b) = \) vertex indices of current search frontier

1. Generate frontier vertex degree offset array ‘fscan’

 - Frontier sub-array of vertex indices is search([a..b))
 - `parallel_scan` of vertex degrees (irow[v+1] – irow[v]) to generate fscan

2. Evaluate search frontier’s edges, \#edges = fscan(b) – fscan(a)

 - `parallel_for` via TeamPolicy, each team searches range of edges
 - Each thread evaluates vertices of collection of edges
 - Atomic update to determine if first visit, append thread-local buffer
 - Intra-team `parallel_scan` of local buffers to count team’s search result
 - Append team’s search to global search array, only one atomic update

3. Repeat for updated frontier
Breadth First Search Algorithm

- Maximizing parallelism
 - Manhattan loop collapse facilitates parallelizing over edges, not vertices
 - Removes load imbalance concerns for highly variable degree vertices

- Minimizing synchronization
 - Thread local buffer for accumulating search result
 - Intra-team parallel scan of thread local buffer sizes for team result size
 - Team’s single atomic update of global search array

- Place arrays in appropriate memory spaces via Kokkos::View
 - Vertex arrays in GPU memory: irow(*), search(*), fscan(*)
 - Edge array in Host-Pinned memory: edge(*)

- Performance evaluation of portable implementation
 - Scalability for graphs with highly variable degree vertices
 - CPU vs. GPU
 - Edge array in GPU vs. Host-Pinned
Breadth First Search Performance Testing

- Sequence of generated test graphs
 - Doubling #vertices and #edges
 - Edges eventually cannot fit in GPU memory
 - Similar vertex degree histograms for all generated graphs

- Start algorithm’s iteration on vertex of largest degree
Breadth First Search Performance Testing

- Good scalability on Kepler
 - Teams stream through edge array with coalesced access pattern
 - Almost 2x performance drop reading edge array from Host Pinned memory
 - Enables processing of large graphs where edges cannot fit in GPU memory
Summary: Concepts and Abstractions

- **ΚΟΚΚΟΣ**: “like grains of sand on a beach”
 - Identify / encapsulate grains of data and parallelizable operations
 - Aggregate these grains with data structure and parallel patterns
 - Map aggregated grains onto memory and cores / threads

- **Mapping**
 - User functions, execution spaces, parallel patterns, execution polices
 - Polymorphic multidimensional array, memory spaces, layout, access intent
 - Atomic operations

- **Hierarchical Parallel Patterns**
 - Maximizing opportunity (grains) for parallelism
Conclusion

- Kokkos enables performance portability
 - `parallel_pattern(ExecutionPolicy<ExecutionSpace> , UserFunction)`
 - Polymorphic multidimensional arrays solves the array-of-structs versus struct-of-arrays dilemma
- Atomic operations
 - Engaging with ISO/C++ Standard to advocate for these capabilities
- Pure library approach using C++ template meta-programming
 - Significantly simplified when UserFunction is a C++11 lambda
 - Cuda 7.5 candidate feature for device lambda : `[=]__device__`
 - Tell NVIDIA you like and want this!
- Thread team execution policy for hierarchical parallelism
 - Portable abstraction for Cuda grids, blocks, warps, and shared memory
- Early R&D for application to graph algorithms