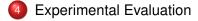
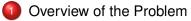
Jorge González-Domínguez

Parallel and Distributed Architectures Group Johannes Gutenberg University of Mainz, Germany j.gonzalez@uni-mainz.de


GTC 2015


・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

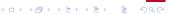
Overview of the Problem


- Intra-GPU Parallelization with CUDA
- Inter-GPU Parallelization with UPC++

- 2 Intra-GPU Parallelization with CUDA
- Inter-GPU Parallelization with UPC++
- 4 Experimental Evaluation
- 5 Conclusions

Genome-Wide Association Studies (I)

Analyses of genetic influence on diseases


Genome-Wide Association Studies (I)

Analyses of genetic influence on diseases

• M individuals

Genome-Wide Association Studies (I)

Analyses of genetic influence on diseases

- M individuals
 - K cases

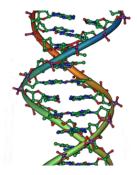
・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

Genome-Wide Association Studies (I)

Analyses of genetic influence on diseases

- M individuals
 - K cases
 - C controls


・ロン ・聞 と ・ ヨ と ・ ヨ と

ъ

Genome-Wide Association Studies (I)

Analyses of genetic influence on diseases

- M individuals
 - K cases
 - C controls
- N genetic markers, Single Nucleotide Polymorphisms (SNPs). 3 genotypes:
 - Homozygous Wild (w, AA, 0)
 - Heterozygous (h, Aa, 1)
 - Homozygous Variant (v, aa, 2)

(日)

Genome-Wide Association Studies (II)

			C	Case	es			Со	ntro	ls						
SNP 1	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	1
SNP 2	0	1	1	0	2	0	0	0	1	2	2	1	0	1	1	2
SNP 3	0	0	0	0	0	0	0	0	1	2	1	1	1	2	1	1
SNP 4	0	1	0	1	0	1	0	1	2	2	2	2	1	1	1	1
SNP 5	0	2	2	2	0	1	1	1	1	0	0	1	1	0	2	2
SNP 6	1	0	1	0	1	0	1	0	1	2	1	2	1	2	2	1

Genome-Wide Association Studies (II)

			C	Case	es			Со	ntro	ls						
SNP 1	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	1
SNP 2	0	1	1	0	2	0	0	0	1	2	2	1	0	1	1	2
SNP 3	0	0	0	0	0	0	0	0	1	2	1	1	1	2	1	1
SNP 4	0	1	0	1	0	1	0	1	2	2	2	2	1	1	1	1
SNP 5	0	2	2	2	0	1	1	1	1	0	0	1	1	0	2	2
SNP 6	1	0	1	0	1	0	1	0	1	2	1	2	1	2	2	1

Genome-Wide Association Studies (II)

			C	Case	es			Со	ntro	ls						
SNP 1	0	1	2	0	1	2	0	1	2	0	1	2	0	1	2	1
SNP 2	0	1	1	0	2	0	0	0	1	2	2	1	0	1	1	2
SNP 3	0	0	0	0	0	0	0	0	1	2	1	1	1	2	1	1
SNP 4	0	1	0	1	0	1	0	1	2	2	2	2	1	1	1	1
SNP 5	0	2	2	2	0	1	1	1	1	0	0	1	1	0	2	2
SNP 6	1	0	1	0	1	0	1	0	1	2	1	2	1	2	2	1

Genome-Wide Association Studies (and III)

Definition

Two SNPs present epistasis or interaction if:

- Their joint genotype frequencies show a statistically significant difference between cases and controls which potentially explains the effect of the genetic variation leading to disease.
- The difference between cases and controls shown by the joint values is significantly higher than using only the individual SNP values.

JG

・ロット (口) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)) ・ ((U))) ・ ((U)) ・ ((U)))

BOOST

BOolean Operation-based Screening and Testing

- Binary traits
- Exhaustive search
- Statistical regression
- Good accuracy (used by biologists)
- Returns a list of SNP pairs with high interaction probability
- Fastest available tool. Intel Core i7 3.20GHz:
 - 40,000 SNPs and 3,200 individuals
 - About 800 million pairs
 - 51 minutes
 - 500,000 SNPs and 5,000 individuals
 - About 125 billion pairs (moderated size)
 - Estimated 7 days

GBOOST

CUDA version for GPUs

- Same accuracy as BOOST
- 40,000 SNPs and 6,400 individuals
 - About 800 million pairs
 - 28 seconds on a GTX Titan
- 500,000 SNPs and 5,000 individuals
 - About 125 billion pairs (moderated size)
 - 1 hour on a GTX Titan

・ コット (雪) (小田) (コット 日)

CUDA version for GPUs

- Same accuracy as BOOST
- 40,000 SNPs and 6,400 individuals
 - About 800 million pairs
 - 28 seconds on a GTX Titan
- 500,000 SNPs and 5,000 individuals
 - About 125 billion pairs (moderated size)
 - 1 hour on a GTX Titan

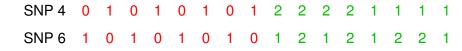
High-throughput genotyping technologies collect few million SNPs of an individual within a few minutes \rightarrow Expected datasets with 5M SNPs and 10,000 individuals

Intra-GPU Parallelization with CUDA

- Inter-GPU Parallelization with UPC++
- 4 Experimental Evaluation
- 5 Conclusions

Calculation of Contingency Tables (I)

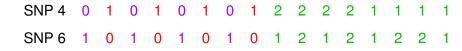
For each SNP-pair \rightarrow Number of occurrences of each combination of genotypes


Cases	SNP2=0	SNP2=1	SNP2=2
SNP1=0	<i>n</i> 000	<i>n</i> ₀₁₀	<i>n</i> ₀₂₀
SNP1=1	<i>n</i> ₁₀₀	<i>n</i> ₁₁₀	<i>n</i> ₁₂₀
SNP1=2	n ₂₀₀	<i>n</i> ₂₁₀	<i>n</i> ₂₂₀
Controls	SNP2=0	SNP2=1	SNP2=2
SNP1=0	<i>n</i> ₀₀₁	<i>n</i> ₀₁₁	<i>n</i> ₀₂₁
SNP1=1	n ₁₀₁	<i>n</i> ₁₁₁	<i>n</i> ₁₂₁
SNP1=2	<i>n</i> ₂₀₁	<i>n</i> ₂₁₁	n ₂₂₁

JG

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト … ヨ

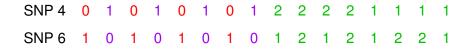
Calculation of Contingency Tables (II)



Casos	SNP6=0	SNP6=1	SNP6=2
SNP4=0	0	4	0
SNP4=1	4	0	0
SNP4=2	0	0	0
		ONIDA 4	
Controles	SNP6=0	SNP6=1	SNP6=2
Controles SNP4=0	SNP6=0	SNP6=1 0	<u>SNP6=2</u> 0
	SNP6=0 0 0	SNP6=1 0 2	SNP6=2 0 2

◆□▶ ◆□▶ ◆注▶ ◆注▶ ●注。

Calculation of Contingency Tables (II)



Casos	SNP6=0	SNP6=1	SNP6=2
SNP4=0	0	4	0
SNP4=1	4	0	0
SNP4=2	0	0	0
Controles	SNP6=0	SNP6=1	SNP6=2
Controles SNP4=0	SNP6=0	SNP6=1	SNP6=2 0
	SNP6=0 0 0	SNP6=1 0 2	SNP6=2 0 2

◆□▶ ◆□▶ ◆注▶ ◆注▶ ●注。

Calculation of Contingency Tables (II)

Casos	SNP6=0	SNP6=1	SNP6=2
SNP4=0	0	4	0
SNP4=1	4	0	0
SNP4=2	0	0	0
Controles	SNP6=0	SNP6=1	SNP6=2
Controles	JNF U_U		5111 0=2
SNP4=0	0	0	0
	0	0 2	0 2

◆□▶ ◆□▶ ◆注▶ ◆注▶ ●注。

Filtering Stage

- Epistatic interaction measured via log-linear models
- All SNP-pairs analyzed
- The measure is obtained with numerical calculations from the values of the contingency table
- Pairs with measure higher than a threshold pass the filter
 - They are included in the output file
- multiEpistSearch uses a faster filter than GBOOST (out of the scope)

CUDA Implementation

CUDA Kernel

- Genotyping information loaded in device memory through pinned copies
- Each thread performs the whole calculation of independent SNP-pairs
- Only one kernel for the whole computation
- Each call to the kernel analyzes a batch of SNP-pairs

CUDA Implementation

CUDA Kernel

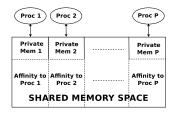
- Genotyping information loaded in device memory through pinned copies
- Each thread performs the whole calculation of independent SNP-pairs
- Only one kernel for the whole computation
- Each call to the kernel analyzes a batch of SNP-pairs

Optimization Techniques

- Boolean representation of genotyping information
- Increase of coalescence
- Exploitation of shared memory

JGU

- Intra-GPU Parallelization with CUDA
- Inter-GPU Parallelization with UPC++
- 4 Experimental Evaluation



UPC++ (I)

- Unified Parallel C++
- Novel extension of ANSI C++
 - Y Zheng, A Kamil, M Driscoll, H Shan, and K Yelick. UPC++: a PGAS Extension for C++. In Proc. 28th IEEE Intl. Parallel and Distributed Processing Symp. (IPDPS'14), Phoenix, AR, USA, 2014.
- Follows the Partitioned Global Address Space (PGAS) programming model
- Single Program Multiple Data (SPMD) execution model
- Works on shared and distributed memory systems

UPC++ (and II)

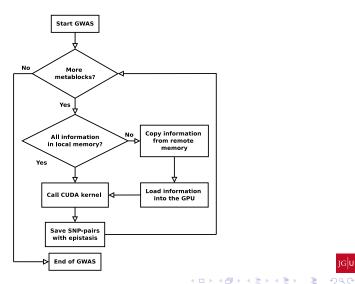
- Global memory logically partitioned among processes
- Processes can directly access (read/write) any part of the global memory

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

 Memory with affinity usually mapped in the same node (faster accesses)

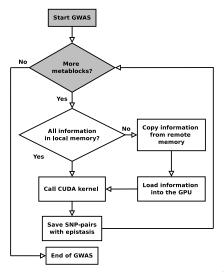
Multi-GPU Approach (I)

- One UPC++ process per GPU
- SNP data distributed among the parts of the global memory
 - All the information of the same SNP in the same part
- Each GPU (UPC++ process) analyzes different SNP-pairs

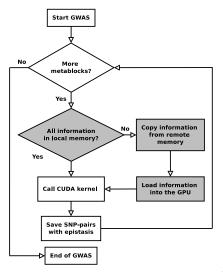

・ロット (雪) (日) (日) (日)

- Creation of contingency table
- Filtering
- The data of the SNPs to analyze might be in remote memory

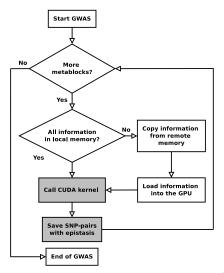
Inter-GPU Parallelization with UPC++


Multi-GPU Approach (II)

Inter-GPU Parallelization with UPC++


Multi-GPU Approach (II)

Inter-GPU Parallelization with UPC++


Multi-GPU Approach (II)

Inter-GPU Parallelization with UPC++

Multi-GPU Approach (II)

Inter-GPU Parallelization with UPC++

Multi-GPU Approach (VI)

Static distribution

- Workload distributed at the beginning
 - Metablocks that will be analyzed by each GPU
- The distribution does not change during the execution
- Balance of the number of metablocks per GPU
 - Similar workload for each GPU
 - Good distribution for systems with similar GPUs
- Minimization of remote copies

・ コット (雪) (小田) (コット 日)

Multi-GPU Approach (and VII)

On-demand distribution

- The metablocks computed by each GPU initially unknown
- Table with one binary value per metablock that indicates if it has been computed
- When one GPU finishes with one metablock \rightarrow Looks for the next one that has not been analyzed
- Locks or semaphores necessary for the concurrent accesses to the table
 - Easy with UPC++ support
 - Synchronizations include performance overhead
- GPUs might compute different number of metablocks
 - Faster GPUs analyze more SNP-pairs
 - Good distribution for systems with different GPUs

JGU

・ロット (雪) (日) (日)

- Intra-GPU Parallelization with CUDA
- Inter-GPU Parallelization with UPC++
- Experimental Evaluation

Evaluation with Homogeneous GPUs (I)

Platform

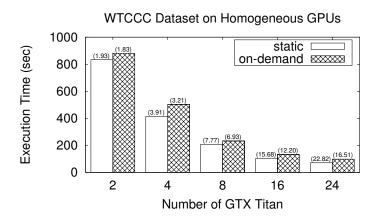
- Mogon cluster
- Johannes Gutenberg Universität
- 8 nodes with 3 GTX Titan GPUs
 - One of the most powerful GPUs
- Infiniband network

Evaluation with Homogeneous GPUs (I)

Platform

- Mogon cluster
- Johannes Gutenberg Universität
- 8 nodes with 3 GTX Titan GPUs
 - One of the most powerful GPUs
- Infiniband network

Dataset


- Real-world data from the WTCCC database
- Moderately-sized
 - 500,568 SNPs
 - 2,005 cases with bipolar disorder
 - 3,004 controls

JGU

JG

Evaluation with Homogeneous GPUs (II)

- Static 1.38 times faster for 24 GPUs
- Static always > 95 % parallel efficiency

э

Evaluation with Homogeneous GPUs (and III)

Design	Architecture	Runtime	Speed (10 ⁶ pairs/s)
multiEpistSearch	24 GTX Titan	1 m 11 s	1764.56
multiEpistSearch	1 GTX Titan	27 m	77.34
GBOOST	1 GTX Titan	1 h 15 m	34.23
EpiGPU*	1 GTX 580	2 h 55 m	11.90
SHEsisEPI*	1 GTX 285	27 h	1.29
BOOST**	Intel Core i7	7 d	0.21

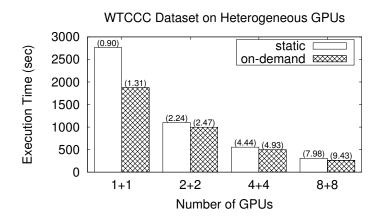
• Speedups for one GPU:

- 2.77 over GBOOST
- > 373 over estimation for BOOST on a 3GHz Intel Core i7
- With 24 Titan 54.93 and > 8,500 times faster than GBOOST and BOOST, respectively

・ロット (雪) (日) (日) (日)

Evaluation with Heterogeneous GPUs (I)

Platform


- Pluton cluster
- Universidade da Coruña (Spain)
- 8 nodes with 1 GTX Tesla K20m
- 4 nodes with 2 Tesla 2050
 - Less cores
- Gigabit Ethernet network

JGU

Evaluation with Heterogeneous GPUs (II)

• On demand 1.18 times faster for 16 GPUs

ъ

Evaluation with Heterogeneous GPUs (and III)

Design	Architecture	Runtime	Speed (10 ⁶ pairs/s)
multiEpistSearch	8 Tesla K20m + 8 2050	4 m 20 s	481.86
multiEpistSearch	8 Tesla K20m	5 m 40 s	348.01
multiEpistSearch	8 Tesla 2050	10 m 12 s	204.71
multiEpistSearch	1 Tesla K20m	41 m	50.93
multiEpistSearch	1 Tesla 2050	1h1m	34.23
GBOOST	1 Tesla K20m	1 h 26 m	24.28
GBOOST	1 Tesla 2050	2 h 17 m	15.22

- With 1 GPU 2.10 and 2.25 times faster than GBOOST
- 1.31 times faster using the whole cluster (on-demand) than only the 8 Tesla K20m

(日) (四) (日) (日) (日)

Evaluation of a Large-Scale Dataset

- Simulated dataset
 - 5M SNPs
 - 5,000 cases
 - 5,000 controls
- 2 hours and 45 minutes on Mogon (24 GTX Titan)
- Estimation of more than 2 days and 14 hours on 1 GPU

(日) (雪) (日) (日) (日)

- GBOOST is not able to analyze it
 - Out-of-bound problems in the arrays

Conclusions

- Intra-GPU Parallelization with CUDA
- Inter-GPU Parallelization with UPC++
- 4 Experimental Evaluation

Conclusions

Conclusions

- multiEpistSearch looks for epistatic interactions on GPU clusters
- Hybrid CUDA&UPC++ implementation
- On only one GPU always speedups higher than 2 over GBOOST
- Two inter-GPU data distributions
 - Static for homogeneous clusters
 - Dynamic for heterogeneous clusters
- High scalability
 - 95% Parallel efficiency with 24 GTX Titans and WTCCC dataset
- 2 hours and 45 minutes for 5M SNPs and 10K samples on 24 GTX Titans

(日) (四) (日) (日) (日)

Conclusions

Bibliography

First version of the GPU kernel

J. González-Domínguez, B. Schmidt, J. C. Kässens, and L. Wienbrandt.

Hybrid CPU/GPU Acceleration of Detection of 2-SNP Epistatic Interactions in GWAS.

In Proc. 20th Intl. European Conf. on Parallel and Distributed Computing (Euro-Par'14), Porto, Portugal.

multiEpistSeach (minor revision)

J. González-Domínguez, J. C. Kässens, L. Wienbrandt, and B. Schmidt.

Large-Scale Genome-Wide Association Studies on a GPU Cluster Using a CUDA-Accelerated PGAS Programming Model. *Intl. Journal of High Performance Computing Applications* (*IJHPCA*).

Jorge González-Domínguez

Parallel and Distributed Architectures Group Johannes Gutenberg University of Mainz, Germany j.gonzalez@uni-mainz.de

GTC 2015

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

