GPU Accelerated Backtesting and ML for Quant Trading Strategies

GTC 2015 | San José | California

Dr. Daniel Egloff
daniel.egloff@quantalea.net
March 18, 2015
Motivation

- **Goals**
 - Execute automated algorithmic trading strategies
 - Optimize risk return

- **Procedure**
 - Extract signals and build price forecasting indicators from market data
 - Transform indicators into buy / sell decisions
 - Apply portfolio risk management

- **Challenges**
 - Find relevant signals and indicators
 - Engineer and parameterize trading decision
 - Find optimal parameters

- **Approach**
 - Exploit parallelism in the computations
 - Accelerate calculations by using a GPU cluster
Algo Trading Strategies

Market data → Mathematical operations → Trading decision

Input

Output

Configurations
Example

- **Buy signal**
- **Sell signal**

Chart Description:
- Fast moving average
- Slow moving average

Excel Table:

<table>
<thead>
<tr>
<th>Date</th>
<th>Time</th>
<th>EUR/USD</th>
</tr>
</thead>
<tbody>
<tr>
<td>04/12/2012</td>
<td>22:00</td>
<td>1.3084</td>
</tr>
<tr>
<td>04/13/2012</td>
<td>17:00</td>
<td>1.3119</td>
</tr>
<tr>
<td>04/16/2012</td>
<td>07:00</td>
<td>1.3123</td>
</tr>
<tr>
<td>04/16/2012</td>
<td>21:00</td>
<td>0.0065</td>
</tr>
<tr>
<td>04/17/2012</td>
<td>11:00</td>
<td>0.0065</td>
</tr>
<tr>
<td>04/18/2012</td>
<td>01:00</td>
<td>0.0065</td>
</tr>
<tr>
<td>04/18/2012</td>
<td>15:00</td>
<td>0.0065</td>
</tr>
<tr>
<td>04/19/2012</td>
<td>14:00</td>
<td>0.0065</td>
</tr>
</tbody>
</table>
Markets

- Futures market
 - CME 50 liquid futures
 - Other exchanges

- Equity markets
 - World stock indices

- FX markets
 - 10 major currency pairs
 - 30 alternative currency pairs

- Options markets
 - Options on futures
 - Options on indices
Strategy Universe

Strategy configurations

Configuration c Trading decision $s(c)$ Utility $U(s(c))$

1 buy
-1 sell

P&L / drawdown
Challenge 1: How can we engineer a strategy producing buy / sell decisions?
Random Forests
Random Forests

Strategy configuration c

Features ➔ Random forest ➔ Trading decision \(s(c) \)

1 buy

-1 sell
Training Random Forests

Bootstrapping to create training sets

C 4.5 algorithm for individual tree construction

- Selecting subset of features for tree construction
- Each node is associated with a subset of training samples
- Recursive, starting at the root node
- At each node execute divide and conquer algorithm to find locally optimal choice
 - If samples are in same class (or few class) node is a leaf associated with that class
 - If samples are in two or more classes
 - Calculate information gain for each feature
 - Select feature if largest information gain for splitting
Entropy

\[T = \text{set of samples associated with node} \]

\[C_1, ..., C_n = \text{classes of samples} \]

Entropy

\[
Ent(T) = - \sum_{i=1}^{n} \frac{freq(C_i,T)}{|T|} \log_2 \left(\frac{freq(C_i,T)}{|T|} \right)
\]

- Characterizes impurity of samples
- Measure of uncertainty
- Additive: impurity of several subsets is sum of impurities

![Graph showing the relationship between \(\text{Pr}(X = 1)\) and entropy.](image)
Information Gain

\(T_1, \ldots, T_s = \) subsets of \(T \) generated by splitting on selected attribute

Information gain discrete feature

\[
\text{gain}(T_1, \ldots, T_s) = \text{Ent}(T) - \sum_{i=1}^{s} \frac{|T_i|}{|T|} \text{Ent}(T_i)
\]

Information gain continuous feature with optimal splitting threshold

\[
\text{gain}(t) = \text{gain}(T_{\leq t}, T_{> t})
\]

\(t_* = \text{argmax} \ \text{gain}(t) \)

Actual implementation uses ratio information gain over split ratio
Training Individual Trees

Labels from positive or negative market returns

All features

Selected features

Permutations to sort features

Permutated labels

Samples / observations

Label

Selected features
Training Individual Trees

- All features
 - Selected features
 - Weights
 - 201402
 - Permutations to sort features
 - Permutations to sort features
 - Permutations labels
 - Permuted labels
 - Permuted weights
 - Label
Training Individual Trees

1. Optimal split t_i

2. Optimal feature F_i

Entropy criterion for best feature and split

Permuted labels

Permuted weights

Entropy for every split

$F_i < t_i$
Training Individual Trees

Recursively refine classification: mask data according to classification.

Selected features → Permutations sort features → Permuted labels

Weight → Permutations sort features → Permuted weights
Training Individual Trees

Recursively refine classification: mask data according to classification
GPU Implementation

- **Parallelism at multiple levels**
 - Multiple trees, one for each set of weights
 - Independent features
 - Independent split points
 - Multiple nodes further down the tree

- **GPU kernels can be implemented with standard primitives**
 - Random number generation for weights
 - Parallel scan (cumulative sum)
 - Parallel map
 - Parallel reduction to find optimal feature and split
Strategy Backtesting

Challenge2: How to choose best trading strategy?
Walk Forward Optimization

3-6 months

1 month

In sample

Out of sample

In sample

Out of sample

In sample

Out of sample

shift by 1 month
Trading P&L

Market returns \(r(t_i) \) = \(\log(P(t_i) / P(t_{i-1})) \)

Trading decision \(s(c) \)

P&L(c) = \(<s(c), r> \)
Optimal Configuration

<table>
<thead>
<tr>
<th>Configurations</th>
<th>P&L</th>
</tr>
</thead>
<tbody>
<tr>
<td>s(c)</td>
<td></td>
</tr>
</tbody>
</table>

pick configuration with largest P&L
Bootstrapping Trading P&L

Configurations

- s(c)
- s(c)
- s(c)
- s(c)
- s(c)
- s(c)

Weights

\[r \cdot w \]

P&L

- x
- x
- x
- x

Pick configuration with largest P&L
Hypothesis Tests

Null Hypothesis
Trading P&L <= 0

Alternative Hypothesis
Trading P&L > 0
Trading P&L Distribution

optimal configurations for each weight

c* for w = 1
White Reality Check

- Scale exposure according to distance from 0
- Do not trade if negative returns

Market 1

\[c^* \text{ for } w = 1 \]

…………

Market n

\[c^* \text{ for } w = 1 \]
GPU Implementation

- Parallelism at multiple levels
 - Multiple markets
 - Independent in-sample / out-of-sample windows
 - Independent strategy configurations
 - Independent time steps for utility functions such as mean return

- GPU kernels can be implemented with standard primitives
 - Random number generation
 - Matrix multiplication (almost, up to return vector scaling the weights)
 - Parallel reduction
GPU Implementation

- GPU grid
 - Multiple markets
 - Independent in-sample / out-of-sample windows

- Per GPU
 - Independent strategy configurations
 - Independent time steps for utility functions such as mean return
Questions ?