GPU Acceleration of Convolutional Neural Network for Brain Carcinoma MRI Image Segmentation by cuDNN

Di Zhao1, Jiantao Le2
1Supercomputing Center, Chinese Academy of Sciences, Beijing, China
2Center for Medical Informatics, Peking University Health Science Center, Beijing, China
*Corresponding author: btie@his.pku.edu.cn

Abstract

Brain carcinoma is one of high-risk diseases in the modern society, and MRI is an important approach for diagnostic screening. Traditionally, recognizing and segmenting brain tumor from patient MRI images are time-consuming assignments by radiologists, and machine learning approaches such as Convolutional Neural Network (CNN) can be developed to increase the efficiency of brain carcinoma diagnosis. However, since the number of MRI image slices is large, the computational time cost of CNN based brain tumor segmentation is too high to satisfy the clinical needs. In this poster, we developed a fast CNN by Nvidia's new Deep Learning library cuDNN (cuDNN-CNN) to accelerate brain tumor segmentation. Computational results show that, cuDNN-CNN significantly accelerates brain tumor segmentation than the conventional CNN: for a 160×216×176 clinical brain carcinoma imaging dataset, cuDNN-CNN segments brain tumors in minutes while the conventional CNN costs hours. Computational results also show that, cuDNN-CNN is as accurate as the conventional CNN.

Introduction

Brain MRI scan is a powerful approach to detect the brain internal structure for abnormalities such as tumor, stroke and bleeding. Brain MRI takes advantages of magnetic field and radio pulses to take inner photos of the brain. The patients usually receive T2 scan with 5mm resolution and 20 images. Also, function MRI is the other approach to detect the brain abnormalities such as stroke with high sensitivity.

Methods

The CNN architecture for brain tumor segmentation is shown in Figure 1. From Figure 1, we can see, the convolutional layers of the CNN architecture for brain tumor segmentation consists of five layers: the first convolutional layer, the first pooling layer, the second convolutional layer, the second pooling layer and the softmax layer. A 19×19×4 slice is extracted from the whole brain image dataset, which is the input of CNN architecture for brain tumor segmentation. The slice passes to the first convolutional layer, which leads to 15×15×64 feature maps. The feature maps are under-sampled by the first pooling layer, and the sizes of feature maps decrease to 5×5×64 feature maps. These feature maps are subject to the second convolutional layer, which leads to 3×3×64 feature maps. The second pooling layer is followed to reach 3×3×64 feature maps. The feature maps are reshaped into a 512×1 vector for the softmax layer, and finally the 512×1 classification results are obtained.

Computational Results

We program the conventional CNN by MATLAB (CNN) and the fast CNN by CUDA/cuDNN (cuDNN-DNN), and we test the codes on a GPU node with two Intel E5-2680 V2. 128G memory and Nvidia K20 GPU. We use the BRATS2012 dataset, which consists of 27 high grade (HG) and 15 low grade (LG) of 160×216×176 3D MRI brain images, and these images are the multi-channel 3D data with 4 different 3D MR contrast images: contrast enhanced T1, T1, T2 and FLAIR.

→ Example of recognized brain carcinoma by cuDNN-DNN is shown in the right figure: (a) the original image and (b) the recognized tumor. As shown in the right figure, cuDNN-DNN successfully recognizes the tumor in (b) from the original MRI image (a).

→ The performance of cuDNN-DNN for brain carcinoma recognition is evaluated by Kitware/MIDAS (http://challenge.kitware.com/midas/), and the calculated dice score is plotted in the left figure. As shown in the left figure, cuDNN-DNN produces high dice scores.

→ The problem of 3D brain tumor segmentation is solved by segmenting the 2D slice in the axial direction one by one, and the input of cuDNN-DNN is 2D image. The 3D CNN problem is calculated by 2D convolution in cuDNN. Each pixel in 2D images is classified into four brain tumors subtypes, and the classification of 2D images into the results of 3D brain tumor segmentation problem.

→ After the network architecture is decided, programming CNN by cuDNN is straightforward and convinient, no details of convolution and pooling are needed, and maximum efficiency is automatically provided by cuDNN. In our cuDNN-CNN implementation, the convolution layer is implemented by cuDNNConvolutionForward, the softmax layer is implemented by cuDNNSoftmaxForward, the pooling layer is implemented by cuDNNPoolingForward, the activation layer is implemented by cuDNNActivationForward.

Conclusion

Convolutional Neural Network is an promising approach for tumor segmentation from brain MRI image.

→ cuDNN significantly accelerate the conventional Convolutional Neural Network for the brain tumor segmentation.

→ GPU computing is the ideal platform for the brain cancer image analysis.

References


GPU Technology Conference, March 17-20, 2015 at the San Jose Convention Center, California (GTC2015)