Accelerated Medical Computing Toolkit and GPU Accelerated Importance-Driven Volume Visualization

Binh P. Nguyen, Rong Wen, Lile Cai, Jichuan Wu, Sim-Heng Ong, Chee-Leong Teo, Chee-Kong Chui
National University of Singapore

Abstract

The aim of our Accelerated Medical Computing Toolkit is to significantly reduce the effort required to construct medical and surgical applications, such as visualization, image-based diagnosis, data processing and sharing, surgical planning, simulation, image-guided surgery and robot-assisted surgery. The toolkit is developed and organized as components which are appropriate cohesive units of functionality. Its component-based architecture allows developers to facilitate the design and assembly of applications from a mix of newly and previously developed components. Each component utilizes multicore CPU and GPU to accelerate the process. We demonstrate the use of the toolkit in the development of several medical applications including an innovative GPU accelerated importance-drive volume visualization method.

GPU Accelerated Importance-Driven Volume Visualization

Volume visualization aims to identify and visualize meaningful structures in a volumetric dataset. Typical volume visualization methods follow a bottom-up approach in which users would have no idea of what is to be explored and what remains to be explored in the volume. We propose an "overview first, details-on-demand" approach:

- Overview: the visualization of all volume items.
- Details-on-demand: the selection of volume items that correspond to interesting or important volumetric objects.

Our GPU-based implementation shows that the method improves the effectiveness and efficiency of volume visualization in medicine.

Volume exploration guidelines for details inspection:

- • Overview first, details-on-demand" Volume Exploration
- • Use multi-dimensional scaling (MDS) to convert representative vectors to 1-D points on the rainbow color scale.
- • Use intensity and gradient to automatically assign opacities.
- • Allow users to adjust optical properties.
- • Guidelines for details inspection:
 - Valley items represent more meaningful structures than ridge items.
 - Similarly colored volume items represent similar structures and can be combined to form a complete structure.

Simulation of Vascular Drug Delivery

• A meshless flow simulation method based on an improved finite particle method.
• Task parallelization is performed to optimize the intensive computation of particle system using GPU.

Augmented Reality-based Image-guided Surgery

• GPU-accelerated computation is used for real-time augmented reality interaction between surgical tools and the organ models.
• AR visual guidance enables surgeons to manipulate radiofrequency needle to reach the target points from different directions.
• The colored cone volumes represent the safety working spaces and depth differences for surgical guidance.

Conclusion

We proposed and developed a GPU-accelerated component-based computing toolkit for medicine. The capability of the toolkit was demonstrated with applications including physics-based simulation of vascular blood flow, an augmented reality-based image guided surgical system and an innovative "overview first, details-on-demand" approach to importance-driven volume rendering of medical images. The latter GPU solution improves the effectiveness and efficiency of volume visualization in medicine.

Contact

A/Prof. Chee-Kong Chui
Department of Mechanical Engineering
National University of Singapore
9 Engineering Drive 1, Singapore 117575
Email: mpecck@nus.edu.sg / cheekong.chui.c@ieee.org