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Abstract
The effective parallelization of applications exhibiting irregular nested parallelism 
is still an open problem. In particular, a naïve mapping of irregular codes to the 
GPU hardware may lead to resource underutilization and, thereby, limited 
performance. In this work, we focus on two computational patterns exhibiting 
nested parallelism: irregular nested loops and recursive algorithms operating on 
tree and graph data structures. We propose different parallelization templates 
aimed at increasing the GPU utilization of these codes. Specifically, we 
investigate different mechanisms to effectively distribute irregular work to 
streaming multiprocessors and GPU cores. We target the Fermi and the Kepler
architecture; in the latter case, we also study parallelization templates relying on 
dynamic parallelism and propose mechanisms to maximize the work performed 
by nested kernels and minimize the overhead due to their launch. Our results 
show that our parallelization templates can achieve 2~6x speedup as compared 
to baseline code variants based on simple parallelization templates.
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Recursive Algorithms

Irregular nested loop sizes lead to hardware underutilization

Irregular Nested Loops

Experiments
SpMV

• GPU platform: NVIDIA K20 GPU, 13 x 192 CUDA cores, 4,800 Mbytes global memory 

• CPU platform: Intel Xeon E5620, 15MB L1 Cache

• CUDA kernel configuration of our implementation: 192 threads per block 

SSSP

• flat parallelism
flat_kernel (graph g) { 

thread-mapped-loop(node n ∈ g.nodes) { 
      for (node p = g.parent[n]; p≠λ; p=g.parent[p])
         atomic{g.descendants[p]+=1;}
}}

Example Application: 
Tree descendants

set_low = ( i :: x[i] <= TH) 
set_high = ( i :: x[i] >= TH) 
thread-mapped_kernel(set_low) 
block-mapped_kernel(set_high) 

dual-queue 

thread-mapped-loop(i) { 
  if (x[i] <= TH) 
      for ( j=1 to x[i] ) computation(i,j) 
  else buffer.add(i)  
} blk-mapped-exec(buffer) 

delayed-buffer 

thread-mapped-loop(i) { 
  if (x[i]<=TH) 
      for ( j=1 to x[i] ) 
computation(i,j) 
  else 
      blk-mapped_nested-kernel(i) 
} 

dynamic parallelism - naive 

thread-mapped-loop(i) { 
  if (x[i]<=TH) 
      for ( j=1 to x[i] ) computation(i,j) 
  else 
      buffer.add(i) 
} blk-mapped_nested-kernel(buffer) 

dynamic parallelism - optimized 

Tree Descendants on Regular Tree 

Tree Descendants 
on Irregular Tree

• recursive parallelism – naïve approach
naive_rec_kernel (graph g, node n) { 

thread-mapped-loop(node c ∈ g.children(n)){ 
      if (!leaf(c)) naive_rec_kernel<1,blockSIZE>(g,c); 
         atomic{g.descendants[n]+=g.descendants[c];
}}

• recursive parallelism – naïve approach
hier_rec_kernel (graph g, node n) { 
   block-mapped-loop (node c ∈ g.children(n)) { 
      bool recurseSHMEM=false; 
     if (!leaf(c)) { 
         thread-mapped-loop(node gc ∈ g.children(c)){ 
            if (!leaf(gc)) recurseSM=true; }
         if (recurseSHMEM)
            hier_rec_kernel<gridSIZE,blockSIZE>(g,c);            
         else 
            g.descendants[c]+=g.num_children(c); } 
     atomic{g.descendants[n]+=g.descendants[c];} }} 
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