
Designing Code Variants for Applications with Nested
Parallelism on GPUs

Da Li, Michela Becchi
University of Missouri - Columbia

Abstract
The effective parallelization of applications exhibiting irregular nested parallelism
is still an open problem. In particular, a naïve mapping of irregular codes to the
GPU hardware may lead to resource underutilization and, thereby, limited
performance. In this work, we focus on two computational patterns exhibiting
nested parallelism: irregular nested loops and recursive algorithms operating on
tree and graph data structures. We propose different parallelization templates
aimed at increasing the GPU utilization of these codes. Specifically, we
investigate different mechanisms to effectively distribute irregular work to
streaming multiprocessors and GPU cores. We target the Fermi and the Kepler
architecture; in the latter case, we also study parallelization templates relying on
dynamic parallelism and propose mechanisms to maximize the work performed
by nested kernels and minimize the overhead due to their launch. Our results
show that our parallelization templates can achieve 2~6x speedup as compared
to baseline code variants based on simple parallelization templates.

References

[1] P. Harish, P. J. Narayanan, “Accelerating Large Graph Algorithms on the GPU
Using CUDA”, High Performance Computing (HiPC), 2007.

[2] Duane Merrill, Michael Garland, Andrew Grimshaw, “High Performance and
Scalable GPU Graph Traversal”, Technical Report UVA CS-2011-05, 2011.

[3] Da Li, Michela Becchi, “Deloying Graph Algorithms on GPUs: an Adaptive
Solution”, Parallel & Distributed Processing Symposium (IPDPS), 2013.

[4] Mikhail Chernoskutov, “Method of Workload Balancing in GPU Implementation
of Breadth-First Search”, High Performance Computing & Simulation (HPCS),
2014.

[5] Da Li, Michela Becchi, “GRapid: a Compilation and Runtime Framework for
Rapid Prototyping of Graph Applications on Many-core Processors”, Parallel
and Distributed Systems (ICPADS), 2014.

Contact us: da.li@mail.missouri.edu

Recursive Algorithms

Irregular nested loop sizes lead to hardware underutilization

Irregular Nested Loops

Experiments
SpMV

• GPU platform: NVIDIA K20 GPU, 13 x 192 CUDA cores, 4,800 Mbytes global memory

• CPU platform: Intel Xeon E5620, 15MB L1 Cache

• CUDA kernel configuration of our implementation: 192 threads per block

SSSP

• flat parallelism
flat_kernel (graph g) {

thread-mapped-loop(node n ∈ g.nodes) {
 for (node p = g.parent[n]; p≠λ; p=g.parent[p])
 atomic{g.descendants[p]+=1;}
}}

Example Application:
Tree descendants

set_low = (i :: x[i] <= TH)
set_high = (i :: x[i] >= TH)
thread-mapped_kernel(set_low)
block-mapped_kernel(set_high)

dual-queue

thread-mapped-loop(i) {
 if (x[i] <= TH)
 for (j=1 to x[i]) computation(i,j)
 else buffer.add(i)
} blk-mapped-exec(buffer)

delayed-buffer

thread-mapped-loop(i) {
 if (x[i]<=TH)
 for (j=1 to x[i])
computation(i,j)
 else
 blk-mapped_nested-kernel(i)
}

dynamic parallelism - naive

thread-mapped-loop(i) {
 if (x[i]<=TH)
 for (j=1 to x[i]) computation(i,j)
 else
 buffer.add(i)
} blk-mapped_nested-kernel(buffer)

dynamic parallelism - optimized

Tree Descendants on Regular Tree

Tree Descendants
on Irregular Tree

• recursive parallelism – naïve approach
naive_rec_kernel (graph g, node n) {

thread-mapped-loop(node c ∈ g.children(n)){
 if (!leaf(c)) naive_rec_kernel<1,blockSIZE>(g,c);
 atomic{g.descendants[n]+=g.descendants[c];
}}

• recursive parallelism – naïve approach
hier_rec_kernel (graph g, node n) {
 block-mapped-loop (node c ∈ g.children(n)) {
 bool recurseSHMEM=false;
 if (!leaf(c)) {
 thread-mapped-loop(node gc ∈ g.children(c)){
 if (!leaf(gc)) recurseSM=true; }
 if (recurseSHMEM)
 hier_rec_kernel<gridSIZE,blockSIZE>(g,c);
 else
 g.descendants[c]+=g.num_children(c); }
 atomic{g.descendants[n]+=g.descendants[c];} }}

contact Name

Da Li: da.li@mail.missouri.edu
Poster

P5230

Category: Developer - Performance Optimization - DO02

