POSTER **P5267**

JOHANNES GUTENBERG UNIVERSITÄT MAINZ

Abstract

LightSpMV [1] is a novel CUDA-compatible sparse matrix-vector multiplication (SpMV) algorithms the standard compressed sparse row (CSR) storage format. It achieves high speed by benefiting fine-grained dynamic distribution of matrix rows over vectors, where a warp is virtualized instruction multiple data (SIMD) vector and can be further split into a set of equal-sized small for finer-grained processing.

In LightSpMV, we have investigated two dynamic row distribution approaches at the vector levels with atomic operations and warp shuffle functions as the fundamental building blocks evaluated LightSpMV using various sparse matrices and further compared it to the CSR-base subprograms in the state-of-the-art CUSP [2] and cuSPARSE [3] libraries. Performance evaluat that on a single Tesla K40c GPU, LightSpMV is superior to both CUSP and cuSPARSE, with of up to 2.60 and 2.63 over CUSP, and up to 1.93 and 1.79 over cuSPARSE for single an precision, respectively. The source code of LightSpMV is available at http://lightspmv.sourcefor

Compressed Sparse Row (CSR) Form

- A frequently used format for sparse matrix storage in CPU-centric software
- Efficient compression of structured and un-structured sparse matrices
- Good amenability to efficient algorithms designed for CPUs
- Enables good SpMV performance on CPUs, but shows a relatively low performance on GPU
- Uses three separate vectors: *row_offsets*, *column_indices*, and *values* to represent a matrix

0.7	0	0	row_offsets =	0	2	4	7	9				
0.2	0.8	0	oolumn indicos –	0	1	1	2	0	2	2	1	2
0	0.3	0.9	column_marces –	0	1	1	2	0	2	3	I	3
0.6	0	0.4	values =	0.1	0.7	0.2	0.8	0.5	0.3	0.9	0.6	0.4
	1		representation of	an e	vamr	le sp	arse n	natrix	-	1		1

Con representation of an example sparse matrix

Sparse Matrix-Vector Multiplication

end for

General SpMV equation:

0.1

0.5

$$y = \alpha A x + \beta y$$

- A is a sparse matrix of size $R \times C$ with NNZ non-zeros
- *x* is the source vector of size *C*
- *y* is the destination vector of size
- *a* and β are scalars
- **procedure** sequentialCSRSpMV()

⊳ itera

- for (i = 0; i < R; ++i) do \triangleright compute the dot product of sum = 0;for $(j = row_offsets[i]; j < row_offsets[i + 1]; ++j)$ do
 - sum += values[j] * x[column_indices[j]];
- \triangleright finalize and save the multipli $y[i] = \alpha * sum + \beta * y[i]$ end for end procedure

Pseudocode of the sequential SpMV using CSR

Host-side SpMV Driver Routine

- Dynamic determination of vector size based on average row length
- Do not need any host-side pre-processing of the CSR data structure
- Launch only a single kernel to perform the SpMV operation.
- CUDA kernels are implemented as CUDA C++ template functions
- procedure spmvHostDriver(cudaDeviceProp& prop, ...) \triangleright set thread block and kernel grid con T = prop.maxThreadsPerBlock;
- B = prop.multiProcessorCount * prop.maxThreadsPerMultiProcessor / numThreadsPer
- \triangleright reset $row_counter$ cudaMemset(row_counter, 0, sizeof(int)); \triangleright calculate the average 1

mean = rint(N_{nz} / R); ⊳ launch if (mean < 2) then \triangleright set the vector

spmvCudaKernel <<< B, T >>> (2, ...);else if (mean < 4) then \triangleright set the vector spmvCuda \overline{K} ernel <<< B, T >>> (4, ...);else if (mean < 64) then \triangleright set the vector spmvCudaKernel <<< B, T >>> (8, ...); \triangleright set the vector size to 32 else spmvCudaKernel <<< B, T >>> (32, ...);

end if end procedure

Pseudocode of the host-side driver for SpMV kernel invocation

Faster Compressed Sparse Row (CSR)-based Sparse Matrix-Vector Multiplication using CUDA

Yongchao Liu, Jorge González-Domínguez, Bertil Schmidt Institute of Computer Science, University of Mainz, Germany Emails: {liuy, j.gonzalez, bertil.schmidt}@uni-mainz.de

	Vector-Level I) ynamic	Row	Distri	
rithm using ag from the as a single ller vectors r and warp s. We have ased SpMV tion reveals a speedup and double orge.net.	 Initially, each vector obtains a row in global row management (GRM) data computes y[i]. GSR contains an integer-type variable which is stored in global memory an lowest row index among all unproce. When a vector has completed its curretrieve a new row from GRM by intervence and the row_counter through an atomic addition. The first thread of each vector takes new row retrieval and broadcasts the to all of the other threads in the vec. Warp shuffle functions are used for broadcasting and intra-vector reduct dot product. 	Index <i>i</i> from a from a structure, and the <i>row_counter</i> , and the <i>row_counter</i> , and the represents the ssed rows. Frent row, it will crementing on operation. The charge of the from the the the row index tor. The row index is the	ocedure spmvCudaKern laneId = threadIdx.x % vectorId = threadIdx.x % shared volatile int row = getRowIndexVec while (row < R) do if (laneId < 2) the space[vectorId][end if row_start = space[vectorId][end if row_start = space[vectorId][end if row_start = space[vectorId][i = row_start - (vector) i = row_	el() ▷ get the lane IE ▷ y; / V; space[NUM_VECTOF etor(); ▷ get the startin n laneId] = row_offsets[if rectorId][0]; ectorId][1]; ▷ compute then (row_start & (warpSize rt && i < row_end) th ues[i] * x[column_indic < row_end; i += V) do ues[i] * x[column_indic art + laneId; i < row_end ues[i] * x[column_indic art + laneId; i < row_end i > 0; i >>= 1) do	ng ro t he ce ce
Js	<pre>b compute the laneId = threadIdx.x % V; if (laneId == 0) then row = atomicAdd(row_counter, 1); end if b broadcast the row index to all other return (row =shfl(row, 0, V)); end function Pseudocode for vector-level row</pre>	threads within the vector r distribution	sum +=shfl_e end for if (laneId == 0) the y[row] = sum + end if row = getRowIndex end while d procedure Pseudocode for	down(sum, i, V); $\beta * y[row];$ (Vector(); or the vector-	1e
]	 Warp-Level D Only one atomic operation is issued for a warp Distributes <i>warpSize</i> / V rows to a single warp at a time Obtains the warp-level CUDA kernel by replacing the function getRowIndexVector with the function getRowIndexVector with the function getRowIndexVector with the function getRowIndexWarp. 	<pre>unction getRowIndexW ▷ compute the warpLaneId = thread warpVectorId = warp if (warpLaneId == 0 row = atomicAde end if ▷ broadc return (row =shfl nd function</pre>	Row Varp() e lane ID and vec dIdx.x & (warpSi pLaneId / V;)) then d(row_counter, we cast the row index (row, 0, warpSize	Distri tor ID of each to ze - 1); varpSize / V); x to all other the e) + warpVector	th re
two vectors	Double	Precisi	on Suj	pport	
cation result	 Intra-vector reduction for double precise Overloads the <u>shfl_down</u> function Uses the reinterpret_cast compiler dire Uses integer <u>shfl_down</u> to exchange Texture fetch for double precision Uses texture object API to reinterpret type value to an int2-type value Uses the <u>hiloint2double</u> function to double-type value 	sion. fun for double ective e data et a double- fun recover the end	ction shfl_de int2 tmp = *re tmp.x =shfl tmp.y =shfl return *reinter I function ction texFetch int2 tmp = te returnhiloi I function	own(value, del interpret_cast _down(tmp.x, _down(tmp.y, pret_cast <dou h(x, i) x1Dfetch<in int2double(tm</in </dou 	lt < c it nj
formation	Benchm	ark Spa	rse Ma	atrices	
rBlock; er to zero	 14 sparse matrices are used for performance evaluation One half are from NVIDIA 	Name webbase-1M dblp-2010 in-2004	Rows / Cols 1,000,005 326,186 1,382,908	$\frac{N_{nz}}{3,105,536}$ 1,615,400 16,917,053	
the kernel r size to 2 r size to 4	 Research [4] The other half are from the University of Florida sparse 	uk-2002 cop20k_A eu-2005 indochina-2004	18,520,486 121,192 862,664 7,414,866	298,113,762 2,624,331 19,235,140 194,109,311	
r size to 8	matrix collection [5]	nlpkkt120 qcd5_4	3,542,400 49,152	96,845,792 1,916,928	

• Average row lengths range from 3 up to 2,633 with standard deviations varying from 0 up to 4,210

111doo11111a 2001	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,
nlpkkt120	3,542,400	96,845,
qcd5_4	49,152	1,916,9
rma10	46,835	237,40
pwtk	217,918	11,634,
shipsec1	140,874	7,813,4
kron_g500-logn21	2,097,152	182,082
rail4284	4,284 / 1,092,610	11,279,

GPU TECHNOLOGY CONFERENCE

tribution

- ane ID and vector ID for the thread
- VECTORS_PER_BLOCK][2]; \triangleright get a row index
- he starting and end offsets for the row offsets[row + laneId];
- compute the dot product of the vector
- warpSize 1)) + laneId; _end) then mn_indices[i]];
- .mn_indices[i]]; < row_end; i += V) do
- mn_indices[i]]; ▷ intra-vector reduction ·= 1) do
 - \triangleright save the result
 - ▷ get a new row
- ector-level CUDA kernel

tribution

- each thread within the warp
 - \triangleright get the row index
- V);
- ther threads within the vector VectorId);

- e, delta, vectorSize) _cast<int2*>(&value); mp.x, delta, vectorSize); mp.y, delta, vectorSize); <double*>(&tmp);
- h < int2 > (x, i);ole(tmp.y, tmp.x);

ces

z	μΙσ	Src
536	3 / 25	N
400	5/8	F
053	12 / 37	F
,762	16 / 28	F
331	22 / 14	N
140	22 / 29	F
,311	26 / 216	F
792	27 / 3	F
928	39 / 0	N
001	51 / 28	N
424	53 / 5	N
404	55 / 11	N
,942	87 / 756	F
748	2,633 / 4,210	Ν

Performance Evaluation

- A Kepler-based Tesla K40c GPU and CUDA 6.5 toolkit
- The vector-level kernel produces an average performance of 14.8 GFLOPS with the maximum performance of 27.0 GFLOPS for single precision, and an average performance of 12.2 GFLOPS with the maximum performance of 20.9 GFLOPS for double precision
- The warp-level kernel yields an average performance of 21.7 GFLOPS with the maximum performance of 32.0 GFLOPS for singe precision, and an average performance of 16.6 GCUPS with the maximum performance of 23.8 GFLOPS for double precision
- Two CSR-based SpMV subprograms in CUSP: *spmv_csr_scalar_tex* (CSR-Scalar) and *spmv_csr_vector_tex* (CSR-Vector)
- LightSpMV is far superior to CSR-Scalar, achieving average speedups of 10.76 and 8.73 with maximum speedups of 22.76 and 13.87 for single and double precision, respectively
- Compared to CSR-Vector, the average speedups of LightSpMV are 1.72 and 1.70, and the maximum speedups are 2.60 and 2.63 for single and double precision, respectively
- Two CSR-based SpMV subprograms in cuSPARSE: cusparseScsrmv and cusparseDcsrmv for single and double precision, respectively
- LightSpMV outperforms cuSPARSE for each case, with the average speedup of 1.47 and the maximum speedup of 1.93 for single precision, and an average speedup of 1.32 with the maximum speedup of 1.79 for double precision

Warp / Vecto	or (GFLOPS)	Speedup		
Single	Double	Single	Double	
14.7 / 3.6	13.0 / 3.5	4.15	3.71	
11.4 / 5.1	9.6 / 4.8	2.25	1.98	
19.3 / 10.4	15.6 / 9.4	1.85	1.66	
22.0 / 13.0	17.7 / 11.5	1.70	1.54	
22.6 / 13.4	16.2 / 11.6	1.69	1.40	
24.1 / 15.5	18.9 / 13.4	1.55	1.41	
22.5 / 15.8	17.4 / 13.1	1.42	1.34	
25.3 / 15.1	19.3 / 12.7	1.68	1.52	
31.9 / 21.4	23.8 / 17.8	1.49	1.34	
28.0 / 22.5	21.4 / 18.0	1.24	1.19	
31.0 / 27.0	23.0 / 20.9	1.15	1.10	
32.0 / 26.3	23.3 / 20.4	1.22	1.14	
4.8 / 4.8	4.0 / 4.0	1.00	1.00	
13.5 / 13.5	9.3 / 9.3	1.00	1.00	
	Warp / Vector Single 14.7 / 3.6 11.4 / 5.1 19.3 / 10.4 22.0 / 13.0 22.6 / 13.4 24.1 / 15.5 22.5 / 15.8 25.3 / 15.1 31.9 / 21.4 28.0 / 22.5 31.0 / 27.0 32.0 / 26.3 4.8 / 4.8 13.5 / 13.5	Warp / Vector (GFLOPS)SingleDouble14.7 / 3.613.0 / 3.511.4 / 5.19.6 / 4.819.3 / 10.415.6 / 9.422.0 / 13.017.7 / 11.522.6 / 13.416.2 / 11.624.1 / 15.518.9 / 13.422.5 / 15.817.4 / 13.125.3 / 15.119.3 / 12.731.9 / 21.423.8 / 17.828.0 / 22.521.4 / 18.031.0 / 27.023.0 / 20.932.0 / 26.323.3 / 20.44.8 / 4.84.0 / 4.013.5 / 13.59.3 / 9.3	Warp / Vector (GFLOPS) Spe Single Double Single 14.7 / 3.6 13.0 / 3.5 4.15 11.4 / 5.1 9.6 / 4.8 2.25 19.3 / 10.4 15.6 / 9.4 1.85 22.0 / 13.0 17.7 / 11.5 1.70 22.6 / 13.4 16.2 / 11.6 1.69 24.1 / 15.5 18.9 / 13.4 1.55 22.5 / 15.8 17.4 / 13.1 1.42 25.3 / 15.1 19.3 / 12.7 1.68 31.9 / 21.4 23.8 / 17.8 1.49 28.0 / 22.5 21.4 / 18.0 1.24 31.0 / 27.0 23.0 / 20.9 1.15 32.0 / 26.3 23.3 / 20.4 1.22 4.8 / 4.8 4.0 / 4.0 1.00 13.5 / 13.5 9.3 / 9.3 1.00	

Warp and Vector denote the warp-level and vector-level kernel, respectively; Single and Double denote single and double precision, respectively. Performance of the vector-level and warp-level kernels

References

- Y. Liu and B. Schmidt: LightSpMV: Faster CSR-based Sparse Matrix-Vector Multiplication on **CUDA-enabled GPUs**. 26th IEEE International Conference on Application-specific Systems, Architectures and Processors, 2015, ready to submit.
- 2. N. Bell and M. Garland: CUSP : Generic Parallel Algorithms for Sparse Matrix and Graph **Computations (v0.4)**. *http://cusplibrary.github.io*, 2014
- 3. NVIDIA: The NVIDIA CUDA Sparse Matrix Library (cuSPARSE), In CUDA 6.5 toolkit, 2014
- 4. N. Bell and M. Garland: Implementing Sparse Matrix-Vector Multiplication on Throughputoriented Processors. Proceedings of the Conference on High Performance Computing Networking, Storage and Analysis, 2009
- 5. T. A. Davis and Y. Hu: The University of Florida Sparse Matrix Collection. ACM Transactions on Mathematical Software, 38 (1), 2011