GPU Computing with MATLAB

Dan Doherty, MathWorks
Why should you care?

- **MATLAB Programmers**
 - Acceleration MATLAB Code with GPUs
 - Minimal code changes

- **CUDA Programmers**
 - Prototype algorithms
 - Create test harnesses for your kernels
 - Quickly explore algorithm parameters
 - Analyze and visualize kernel results
What is MATLAB?

- High level language and development environment for:
 - Algorithm and application development
 - Data analysis
 - Mathematical modeling
 - GPU computing *

- Extensive math, engineering, and plotting functionality

- Add-on products for image and video processing, communications, signal processing, financial modeling, and more

- Over 1.3 million users worldwide

* Requires Parallel Computing Toolbox
Speed up MATLAB code with NVIDIA GPUs

10x *speedup* in data clustering via K-means clustering algorithm

20x *speedup* in wind tunnel acoustic data analysis (NASA Langley Research Center)

14x *speedup* in template matching (part of cancer cell image analysis)

17x *speedup* in simulating the movement of 3072 celestial objects

4x *speedup* in wave equation solving (part of seismic data processing algorithm)

4x *speedup* in adaptive filtering (part of acoustic tracking algorithm)
Demonstration: 2D wave equation

Goals
- Solve 2D wave equation in MATLAB
- Use GPU computing to speed-up algorithm

Damped wave equation

\[
\frac{\partial^2 u}{\partial t^2} = r^2 \nabla^2 u - b \frac{du}{dt}
\]

\[u_{t+1} = 2u_t - u_{t-1} + r^2 \nabla^2 u - b(u_t - u_{t-1})\]
Running MATLAB code on the GPU

- 200+ built-in MATLAB functions that are supported on the GPU
 - Random number generation
 - FFT
 - Matrix multiplications
 - Solvers
 - Convolutions
 - Min/max
 - SVD
 - Cholesky and LU factorization

- Additional support in toolboxes
 - **Image Processing**
 - Morphological filtering, 2-D filtering, …
 - **Communications**
 - Turbo, LDPC, and Viterbi decoders, …
 - **Signal Processing**
 - Cross correlation, FIR filtering, …

- Use `arrayfun` to execute custom functions on the GPU (more efficiently than doing each operation within function individually)
How can MATLAB support CUDA development?

Research & Design
- Explore and discover
- Gain insight into problem
- Evaluate options, trade-offs

Implementation
- Migrate design to production
- Optimize performance
- Deploy / Integrate / Test

Test & Verification
- Design
- Test
- Elaborate

- .exe
- .NET
- dll
- CUDA
- .C/C++
- Java
- HDL
Demonstration: 2D wave equation

Goals

- Develop 2D wave equation solver in CUDA C/C++
- Use MATLAB to support CUDA development
Summary

- Develop GPU applications in MATLAB
 - Built-in GPU enabled functionality
 - `arrayfun` for element-wise operations
 - CUDA kernel integration
 - Leverage multiple GPUs

- Use MATLAB to support CUDA development
 - Prototype and explore algorithms
 - Create test harnesses for your kernels
 - Analyze and visualize kernel results
Next steps

- Learn more by visiting www.mathworks.com/gpu

- Try GPU computing with MATLAB on Amazon EC2
 - Email matlab-gpu-trial@mathworks.com if interested

- Thank you!
Test Drive K40 GPU - World’s Fastest GPU
Upload and run your own codes by remotely accessing a cluster

Latest Tesla K40 GPUs
Secure Clusters
For Free

Sign-up below

"The GPU Test Drive is awesome! We were able to benchmark, gain valuable insight and significant performance improvement. A very big thank you for the opportunity."

Richard Heyns, CEO of bryltyt, UK

www.nvidia.com/GPUTestDrive
UPCOMING GTC EXPRESS WEBINARS

GPU Architecture & the CUDA Memory Model
Chris Mason, Acceleware
Wednesday, July 16

Deep Neural Networks for Visual Pattern Recognition
Dan Ciresan, IDSIA
Wednesday, August 6

Asynchronous Operations & Dynamic Parallelism in CUDA
Dan Cyca, Acceleware
Tuesday, August 12

10 Billion Parameter Neural Networks in Your Basement
Adam Coates, Baidu
Wednesday, August 20