
NVIDIA Path Rendering

Accelerating Vector Graphics for the Mobile Web

Mark Kilgard
Principal Graphics Software Engineer
NVIDIA Corporation

About Me

• Principal System Software Engineer

– OpenGL driver and API evolution

– Cg (“C for graphics”) shading language

– GPU-accelerated path rendering

• OpenGL Utility Toolkit (GLUT) implementer

• Author of OpenGL for the X Window System

• Co-author of Cg Tutorial

• Now working on NVIDIA’s web browser team

What is Path Rendering?

• A rendering approach

– Resolution-independent
two-dimensional (2D) graphics

– Occlusion & transparency depend on
rendering order

• So called “Painter’s Algorithm”

– Basic primitive is a path to be filled
or stroked

• Path is a sequence of path commands

• Commands are

– moveto, lineto, curveto, arcto,
closepath, etc.

• Common rendering model to many
2D graphics standards & APIs

What is a path?

• Intuition:
an “outline”

• Well-known to

2D artists

Geometric Features
of a Path

• Complex 2D

representation

curved

segments

straight

segments

holes

font

glyphs

concave

shapes

fine nested detail possible

“kissing”

joins

Path defined by control points

• 2D points

define outline

– Bezier

segments

define curves
extrapolating

control points

interpolating

control points

Paths can be Filled

• Intuition:
“Color between

the lines”

• Fill rules

– Non-zero

• Overlaps

allowed

– Even-odd

Or Stroked

• Intuition:
“Trace the

outline with

a pen”

Or Both

• Filling, then Stroking
helps “highlight”

an object

Embellishments

• Gradients & other shading
can be applied

• The stroking can
be “dashed”

• Stroking can vary

– stroke width

– end-caps

– dash-caps

– join-styles

– mitering

Path are the Basic Primitive
of a Rich Set of 2D Graphics Operations

Geometry Paint Composite
• Bezier curves

• Fill & stroke

• Dash

• Cap

• Miter

• Color

• Image

• Pattern

• Gradient

• Shade!

• Transparency

• Blend modes

• Mask

• Filter

• Post-process

Path Rendering Standards

Document
Printing and
Exchange

Immersive
Web
Experience

2D Graphics
Programming
Interfaces

Office
Productivity
Applications

Resolution-
Independent
Fonts

OpenType

TrueType

Flash

Open XML
Paper (XPS)

Java 2D
API

Mac OS X
2D API Adobe Illustrator

Inkscape
Open Source

Scalable
Vector
Graphics

QtGui
API

Maps

Some Examples of Complex
Path Rendering Content

Varied applications

NVIDIA’s Santa Clara headquarters

Open Street Map vector data

Each dot in
the zoom above
is a path’s
control point

Super-intricate Adobe Illustrator artwork

Web pages rendered from their true
resolution-independent form

Visualizing the control points
for every glyph and path

Zoom in and see the detail
And control points

Why is NVIDIA Interested in GPU-accelerated
Path Rendering?

• Power wall

More functionality with less

latency…

…with less power

• Increasing screen resolutions
• Multi-touch

• Increasing screen densities

• Immersive 2D web content

Complete Web
Pages Rendered
via OpenGL

without Pre-rendered Glyph Bitmaps and all on GPU

http://www.gputechconf.com/page/summits.html

Not just zoomed & rotated,
also perspective

Every glyph is rendered from its
outline; no render-to-texture

Magnify & minify
with

no transitional
pixelization

or tile popping
artifacts

No tricks

Android Path Rendering Demo

Mobile Web Browser
Rendering with NV_path_rendering

NVIDIA’s Approach to Path Rendering

• OpenGL extension to GPU-accelerate path rendering

• Uses “stencil, then cover” (StC) approach
– Create a path object

– Step 1: “Stencil” the path object into the stencil buffer

• GPU provides fast stenciling of filled or stroked paths

– Step 2: “Cover” the path object and stencil test against its coverage
stenciled by the prior step

• Application can configure arbitrary shading during the step

• Supports union of functionality from all major path rendering
standards

– Includes all stroking embellishments

– Includes first-class text and font support

– Allows functionality to mix with traditional 3D and programmable shading

Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

Texture
memory

Pixel assembly
(unpack)

Pixel operations

Pixel pack

Vertex pipelinePixel pipeline

Application

transform
feedback

read
back

Framebuffer

Raster operations

Conventional OpenGL Pipeline

• Great for 3D geometry

– Triangles!

– Depth buffering

– Shading

• Also good for pixels and

textures

– Texturing

– Off-screen rendering

– Multisampling

– First-class sRGB

• No support for path

rendering �

OpenGL Pipeline + NV_path_rendering

Vertex assembly

Primitive assembly

Rasterization

Fragment operations

Display

Vertex operations

Application

Primitive operations

Texture
memory

Pixel assembly
(unpack)

Pixel operations

Pixel pack

Vertex pipelinePixel pipeline

Application

transform
feedback

read
back

Framebuffer

Raster operations

Path pipeline

Path specification

Transform path

Fill/Stroke
Stenciling

Fill/Stroke
Covering

NV_path_rendering
adds new

pipeline specifically

for path rendering

First class! ☺☺☺☺

Designed with

path rendering

standards and

features in mind

Way Faster than Alternatives

Alternative APIs rendering same content

-

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

1,800.00

2,000.00

 1

0
0
x
1

0
0

 2

0
0
x
2

0
0

 3

0
0
x
3

0
0

 4

0
0
x
4

0
0

 5

0
0
x
5

0
0

 6

0
0
x
6

0
0

 7

0
0
x
7

0
0

 8

0
0
x
8

0
0

 9

0
0
x
9

0
0

 1
0
0
0
x
1
0

0
0

 1
1
0
0
x
1
1

0
0

Window Resolution in Pixels

F
ra

m
e
s

p
e
r

se
co

n
d

Cairo

Qt

Skia Bitmap

Skia Ganesh FBO (16x)

Skia Ganesh Aliased (1x)

Direct2D GPU

Direct2D WARP

With NV_path_rendering

-

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

1,800.00

2,000.00

 1

0
0

x
1
0

0

 2

0
0

x
2
0

0

 3

0
0

x
3
0

0

 4

0
0

x
4
0

0

 5

0
0

x
5
0

0

 6

0
0

x
6
0

0

 7

0
0

x
7
0

0

 8

0
0

x
8
0

0

 9

0
0

x
9
0

0

 1
0

0
0
x
1

0
0

0

 1
1

0
0
x
1

1
0

0

Window Resolution in Pixels

F
ra

m
e
s

p
e

r
se

co
n

d

16x

8x

4x

2x

1x

Alternative approaches

are all much slower…

and insensitive to window

size � CPU bound �

Configuration

GPU: GeForce 480 GTX

CPU: Core i7 950 @ 3.07 GHz

NV_path_rendering

scales with smaller

window sizes ☺

anti-aliasing

samples/pixel:

Details on (all much slower) alternatives

Same results, changed Y Axis

-

50.00

100.00

150.00

200.00

250.00

 1

0
0
x
1
0
0

 2

0
0
x
2
0
0

 3

0
0
x
3
0
0

 4

0
0
x
4
0
0

 5

0
0
x
5
0
0

 6

0
0
x
6
0
0

 7

0
0
x
7
0
0

 8

0
0
x
8
0
0

 9

0
0
x
9
0
0

 1
0
0
0
x
1
0
0
0

 1
1
0
0
x
1
1
0
0

Window Resolution in Pixels

F
ra

m
e
s

p
e
r

se
co

n
d

Cairo

Qt

Skia Bitmap

Skia Ganesh FBO (16x)

Skia Ganesh Aliased (1x)

Direct2D GPU

Direct2D WARP

Alternative APIs rendering same content

-

200.00

400.00

600.00

800.00

1,000.00

1,200.00

1,400.00

1,600.00

1,800.00

2,000.00

 1

0
0

x
1

0
0

 2

0
0

x
2

0
0

 3

0
0

x
3

0
0

 4

0
0

x
4

0
0

 5

0
0

x
5

0
0

 6

0
0

x
6

0
0

 7

0
0

x
7

0
0

 8

0
0

x
8

0
0

 9

0
0

x
9

0
0

 1
0

0
0

x
1

0
0

0

 1
1

0
0

x
1

1
0

0

Window Resolution in Pixels

F
ra

m
e

s
p

e
r

se
co

n
d

Cairo

Qt

Skia Bitmap

Skia Ganesh FBO (16x)

Skia Ganesh Aliased (1x)

Direct2D GPU

Direct2D WARP

Why a first-class OpenGL extension?

• Many have tried to layer path rendering atop a 3D API

– Microsoft’s Direct2D atop Direct3D

– Google’s Skia atop OpenGL ES

– Various efforts by Cairo, Adobe, and OpenVG layers

• Recurrent challenge

– Real-world path rendering content = lots of tiny paths

– Frequent 3D API state changes or CPU work in layered algorithms �
CPU bound performance ����

• Other approaches wind up simply “GPU-assisted”, not GPU-accelerated

• With an OpenGL extension, the driver overhead can be mitigated

– Result is NV_path_rendering is truly GPU-accelerated ☺☺☺☺

NV_path_rendering vs. “Layered”
OpenGL Implementation

0

200

400

600

800

1,000

1,200

1,400

1,600

1,800

2,000

 100x100 200x200 300x300 400x400 500x500 600x600 700x700 800x800 900x900 1000x1000 1100x1100

Window resolution in pixels

F
ra

m
es

 p
er

 s
ec

o
n

d

NV_path_rendering, display listed

NV_path_rendering

Layered OpenGL, display listed

Layered OpenGL

GeForce 570 GTX on fast Core i7

CPU bound at
low res �

CPU bound �

GPU bound ☺

GPU bound ☺ Conclusion
• Layered implementations

very CPU bound;
• NV_path_rendering is

actually GPU bound

other alternatives even more CPU bound �

Evaluating Power Efficiency & Interactivity

• System performance expectations

• Rule of Thumb

• Metrics of
interest

GPU

power

efficiency
>

CPU

power

efficiency

GPU

performance > CPU

performance

“Faster you can efficiently get the frame done,

sooner you can idle the power usage!”

frames / second, in Hertz

� efficiency

� interactivity

energy / frame, in Millijoules

Latency & Power-efficiency
Measurements

• Skia CPU

– 81 milliseconds, 12.3 fps

– 1 unit of energy to draw a frame

• Native NV_path_rendering

– 22.2 milliseconds, 45 fps

– 0.44 units of energy to draw a frame

• 56% less energy per frame
at 3.6x interactivity!

scene: New York Times
web page capture

Fine print
• All glyphs rendered from paths
• Continuous rendering, for reliable power measurements
• Using NVPR Demo for apples-to-apples rendering
• Tegra K1 device running Android
• Dual core OpenGL driver used
• Preliminary data, still improving GPU results ☺
• Comparing power at disparate frame rates is tricky

Wow, 56% less energy/frame

at 3.6x the interactivity!

Consequence of GPU-accelerated algorithms for path rendering

GPU Path Rendering:
More Interactive for Less Power

0

10

20

30

40

50

60

smaller is betterbigger is better

Skia CPU NVpr GPU NVpr GPUSkia CPU

F
ra

m
es

/s
ec

on
d

M
ea

su
re

d
en

er
gy

 p
er

 fr
am

e

Interactivity Energy Efficiency

Where does the
energy get spent?
Breakdown…

Memory
System
GPU
CPU

smaller is better

NVpr GPU @ 45 fpsSkia CPU @ 12.3 fps

M
ea

su
re

d
en

er
gy

 p
er

 fr
am

e

• CPU dominates power

consumption

• GPU quite efficient

when GPU path

rendering

Last slides graph detailed…

� regular grid
on CPU sub-optimal antialiasing

� jitter pattern
on GPU for better antialiasing

GPU Offers Jittered Sampling for Free

� conflation artifacts on CPU � conflation free on GPU
Eliminate Conflation Artifacts

Multiple color samples per pixel

yucky
color bleeding

Cairo

NV_path_rendering

Skia

�

��

feathers?weird big holes

Stroking approximations avoided by GPU

� GPU

� Qt

� Cairo

Moiré
artifacts

Similar
for Qt &
Skia

Proper gradient filtering on GPU

Better Quality on GPU

New Path Rendering Capabilities too
Arbitrary programmable shader

on paths— bump mapping

3D and vector graphics mix

2D in perspective is free

Better Text

• Old way

– CPU renderer glyphs into bitmaps

• For every glyph, size, rotation, etc.

– Download glyphs to texture atlas

• Juggling lots of bitmaps

• Better way

– Simply draw glyphs directly

from their outline path

– Simpler, faster

– Mathematically correct

First-class, Resolution-independent
Font Support

• Fonts are a standard, first-class part of all
path rendering systems

– Foreign to 3D graphics systems such as OpenGL
and Direct3D, but natural for path rendering

– Because letter forms in fonts have outlines
defined with paths

• TrueType, PostScript, and OpenType fonts all use
outlines to specify glyphs

• NV_path_rendering makes font support easy
– Can specify a range of path objects with

• A specified font

• Sequence or range of Unicode character points

• No requirement for applications use font
API to load glyphs

– You can also load glyphs “manually” from
your own glyph outlines

Bringing Same Path Rendering Technology to
All NVIDIA Platforms

• All Fermi, Kepler, and Maxwell GPUS have it!

First Mobile Support: K1

Tegra K1
192-core Super Chip

Supporting

NV_path_rendering

extension today on

Android & Linux

Web Standards Integration

• Google’s Skia API for 2D graphics

– Used by Android graphics

– And Chrome browser

• Now uses NV_path_rendering when available

– Same Skia API, just uses NV_path_rendering when

available on NVIDIA GPUs

– Provides hardware-independence

– Natural step to use by Blink-based browsers

Mapping
Skia
to
NVpr

parameters to draw method

Path Generation

Canvas.draw(…, Paint)

initial Path

PathEffect

effect Path

Stroking

Path

Rasterization

scan conversion

Rasterizer
initial mask

MaskFilter

mask

Shading

Shader

initial “source” image

ColorFilter

Transfer

XferMode

blending

initial “source” image

“source” image

modified

destination

image

original

destination

image

Path
specification

and baking
glPathCommandsNV

Path
Stenciling

glStencilFillPathNV

or

glStencilStrokePathNV

Path
Covering
glCoverFillPathNV
or
glCoverStrokePathNV

Original diagram:

http://xenomachina.com/

android-canvas-pipeline.svg.gz

Content Creation Too

• Working with Adobe to GPU-accelerated

Illustrator

– Work in-progress, in beta now

– Uses NV_path_rendering technology

GPU-acceleration of
Illustrator Example
• Scene complexity

– ~11,000 paths

– ~2000 transparent objects

– ~2000 gradients

• CPU vs. GPU at rendering same scene

– CPU: Intel Xeon E3-1240

– GPU: NVIDIA GeForce GTX 780 Ti

~11x~4.7xGain

5538GPU (ms)

608178CPU (ms)

3840x

2160

1680x

1050

Resolution

S4867 - The Path to Fast Vector Art Rendering in
Adobe Illustrator
� Presenter: Vineet Batra

Senior Computer Scientist, Adobe

� Day: Wednesday, March 26, 2014

� Time: 16:30 - 16:55

� Location: Room 211B

� Session Level: Intermediate

� Session Type: Talk

� Tags: Media & Entertainment Summit;
Recommended Press Session – Media &
Entertainment

This talk covers a real-world application of
NVIDIA's path rendering technology (NVPR) for
accelerating 2D vector graphics, based on
Adobe PDF model. We shall demonstrate the
use of this technology for real-time,
interactive rendering in Adobe Illustrator CC.
The substantial performance improvement is
primarily attributed to NV_path_rendering’s
ability to render complex cubic Bezier curves
independently of device resolution. Further,
we shall also discuss the use of NVIDIA's Blend
extension to support compositing of
transparent artwork in conformance with the
Porter-Duff model using 8X-multisampling and
per-sample fragment Shaders. Using these
technologies, we achieve performance of 30
FPS when rendering and scaling a complex
artwork consisting of a hundred thousand
cubic Bezier curves with ten thousand blend
operations per frame using GTX 780 TI
graphics card.

Conclusions

• NVIDIA is GPU-accelerating path rendering
– High-performance & power-efficient

– Full feature set, matching established standards

– First-class solution, done as OpenGL extension

– Now available on Tegra mobile GPUs

• Working to improve web implementations
– Skia now has NV_path_rendering support

• Apps can target a vendor-independent API

– Demonstrated prototype of web browser

• Also working on content creation too

Questions?

S4810 - NVIDIA Path Rendering:
Accelerating Vector Graphics for the Mobile Web
� Day: Tuesday, March 25, 2014

� Time: 15:30 - 15:55

� Location: Room LL21C

� Session Level: All

� Session Type: Talk

� Tags: Mobile Summit; Real-Time
Graphics Applications; In-Vehicle
Infotainment (IVI) & Safety; Media &
Entertainment

Come see how NVIDIA is transforming your
web browser into a fully GPU-accelerated
experience. NVIDIA Path Rendering
provides GPU-acceleration for web
graphics standards such as Scalable Vector
Graphics (SVG), HTML 5 Canvas, PDF
documents, and font rendering. On mobile
devices, screen resolutions and densities
vary so vector graphics is a natural way to
deploy 2D graphics experience such as
games, maps, and traditional web pages.

Watch as we demonstrate accelerated SVG
viewers and web browsers on Tegra
devices. We do this with an OpenGL
extension available on all of NVIDIA's latest
desktop and mobile GPUs.

