10 Billion Parameter Neural
Networks in your Basement




Overview: two parts

* Deep learning and feature learning.
— Exciting topic in machine learning.
— Major area of Al research.

* HPC and deep learning




What do we want computers to do with our data?

Images/video

Label: “Motorcycle”
Suggest tags
Image search

Speech recognition
Music classification
Speaker identification

Web search
Anti-spam
Machine translation




Machine learning for image classification

“Motorcycle”




Computer vision is hard!

Migma Systems, Inc.




What do we want computers to do with our data?

— — —— Label: “Motorcycle”
Images/video [ - N —— 5 Suggest tags

Machine learning performs well on many of these problemes,
but is a lot of work.

What is it about machine learning that makes it so hard to
use?
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Why is this hard?
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Pixel Intensity

Pixel intensity is a very difficult representation.




Why is this hard?

Pixel Intensity

Motorcycle

Not Motorcycle




Why is this hard?

Is this a Motorcycle?
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Features

Handlebars?

Is this a Motorcycle?

Handlebars? Handlebars?
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Why do features help?

Provide knowledge that system can’t learn on its own.
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Can we acquire this
knowledge from data?
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Learning features

14 x 14 pixel image patch 196 pixel intensities
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Can we learn a “better” feature vector?




Example: Sparse coding

* Try to find a set of “basis” images so that any 14x14
patch can be built from just a few of them.

[Olshausen & Field, ‘96]
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such that most of h,, h,, h,, ... are zero (“sparse”).




Example: Sparse auto-encoder

Unlabeled Image Patches Learned Features (“Edges”)
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Learning Algorithm

Feature Vector: a “higher level” representation.
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Features as neural networks

 We have mathematical principles to find features h that
are better than original pixels.

e Often use “neural networks” to generate these features:

Features = g(Wx)

Pixels




Learning features as neural networks

 We have mathematical principles to find features h that
are better than original pixels.

e Often use “neural networks” to generate these features:

Features

Pixels
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Features

14 x 14 pixel image patch




Deep learning

* Try to build deep neural networks that compute
higher and higher level abstractions.

7 “Motorcycle”
XL RS

[ HASK
‘AA‘\




Large-scale deep learning

e Historically, bigger models have tended to make way
for improved results.

— Big networks can represent more complex concepts.

 What types of “high level” concepts can big networks
learn?




“High-level features”

* 1 billion parameter, 9 layer neural network trained by Google.
— Trained on 10 million YouTube video frames.

 Some features represent “objects” in images.

— System has no prior knowledge of the concept of “objects”.

—
H Bodies:

-

» 1000 machines for 1 week. (16000 cores.)

[Le et al., ICML 2012; Dean et al., NIPS 2012]




Large-scale DL in your basement




What can the rest of us do??

Millions of SS hardware.

Extensive engineering to handle
node failures and network traffic.

Hard to scale further (10,000 machines?!)
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Scaling

* Scale up: Make use of GPUs.

S
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» Networking infrastructure a recurring bottleneck>




Two ways to scale neural networks

e Simple solution: “data parallelism”
— Parallelize over several training images at once.

|44

Machine 1 Machine 2

» Need to synchronize parameters across machines.
» Difficult to fit big models on GPUs.



Two ways to scale neural networks

* “Model parallelism”
— Parallelize over neurons / features in the network.

W
900

Machine 1 Machine 2

» Scales to much larger models.
» Much more frequent synchronization.




Efficiency

 Why should this work?

— Number of neurons to move: O(m + n)
— Amount of computation to do: O(mn)

N neurons

mn connections

\
Image 1 ‘ ‘ . m neurons

Machine 1 Machine 2

— Big networks end up bottlenecked on compute!




One catch: Network bottleneck

 Still need to move those neurons...
— Move 1MB of neurons for 100 images at 1Gbps = 0.8 seconds
— Must do this for every layer (e.g., 10 or more).
— Typically >>10 times slower than computation.

 Hard to make “m” and “n” big.

— How do we scale out efficiently??




COTS HPC Hardware

* Infiniband:
— FDR Infiniband switch.
— 1 network adapter per server.

56 Gbps; microsecond latency.

* GTX 680 GPUs

— 4 GPUs per server. N
> 1 TFLOPS each for ideal workload.




OTS HPC Software Infrastructure

* Infiniband (“IB”): Use MPI

— MPI = Message Passing Interface
e Standard mid-level APl usually supporting IB.

— MVAPICH2: GPU-aware MPIl implementation.

* Enables message passing across GPUs with MPI.
* Transparently handle GPUs in different machines.

* GPUs: NVIDIA CUDA
— All GPU operations are local. No RDMA, etc.




Model parallelism in MPI

MPI starts a single process for each GPU.
— Enables message passing, but this is pretty unnatural.
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Model parallelism in MPI

MPI starts a single process for each GPU.
— Enables message passing, but this is pretty unnatural.

GPU 2
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HPC Software Infrastructure: Communication

* Moving neuron responses around is confusing.
— Hide communication inside “distributed array”.
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HPC Software Infrastructure: Communication

e After some hidden communication, GPU 2 has
all the input data it needs.

— GPU code not much different from 1 GPU.
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HPC Software Infrastructure: GPU

* Bottleneck operations in large networks:
» Dealing with sparse connectivity patterns.

/4 X WX

* Trick: leverage optimized BLAS code for small dense multiplies.
— Need to pick networks with big blocks of neurons sharing connectivity.




Results: Unsupervised Learning

* Duplicated results from Le et al., 2012.
— 3 machines, 12 GPUs

Object | Guessing | _Random net | __1.8B param net

Human faces 64.7% 64.8% 88.2%
Upper body 64.7% 64.8% 80.2%
Cats 64.7% 64.8% 73.0%

Visualizations of object-selective neurons:




Results: Scaling

* 9-layer neural network from Le et al., 2012.
— Compute “fine-tuning” update. (Most demanding step.)
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# GPUs
 Upto 11.2B parameter networks.
— Update time similar to 185M parameter network on 1 GPU.




Results: Scaling

 Upto47xincrease in throughput:
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Conclusion

 “Tera-scale” deep learning now possible in a typical research lab.
* Duplicated results from 1000 machines with 3 GPU servers.

* Simple abstractions and OTS software sufficient for a scalable
implementation.

* 6.5x larger networks (up to 11.2B parameters).

 What ideas are we missing to capture more complex concepts?

* Hardware is suddenly not our bottleneck!

Thanks to: Quoc Le, Bill Daly, Cliff Woolley, Michael Bauer, Geoffrey Fox,
Stanford CSD-CF, and the authors of MAGMA BLAS and MVAPICH2.




