# 10 Billion Parameter Neural Networks in your Basement

Adam Coates
Stanford University

### Overview: two parts

- Deep learning and feature learning.
  - Exciting topic in machine learning.
  - Major area of Al research.
- HPC and deep learning

### What do we want computers to do with our data?



# Machine learning for image classification



# Computer vision is hard!

















### What do we want computers to do with our data?



Machine learning performs well on many of these problems, but is **a lot** of work.

What is it about machine learning that makes it so hard to use?

Text



# Why is this hard?



"Motorcycle"



| 17  | 7 153 | 118 | 91  | 85  | 100 | 124 | 145 |
|-----|-------|-----|-----|-----|-----|-----|-----|
| 15: | 1 124 | 93  | 77  | 86  | 115 | 148 | 168 |
| 11  | 5 93  | 78  | 83  | 108 | 145 | 177 | 191 |
| 88  | 3 79  | 84  | 104 | 136 | 168 | 190 | 197 |
| 82  | 2 85  | 103 | 127 | 152 | 170 | 180 | 182 |
| 9:  | 1 101 | 120 | 138 | 150 | 157 | 159 | 159 |
| 10: | 3 114 | 127 | 136 | 140 | 140 | 140 | 141 |
| 11: | 1 119 | 126 | 130 | 130 | 129 | 128 | 130 |
|     |       |     |     |     |     |     |     |

**Pixel Intensity** 

Pixel intensity is a very difficult representation.

# Why is this hard?



# Why is this hard?



### **Features**



# Why do features help?

Provide knowledge that system can't learn on its own.



# Learning features

14 x 14 pixel image patch

196 pixel intensities

2





Can we learn a "better" feature vector?

### Example: Sparse coding

Try to find a set of "basis" images so that any 14x14 patch can be built from just a few of them.
 [Olshausen & Field, '96]



such that most of h<sub>1</sub>, h<sub>2</sub>, h<sub>3</sub>, ... are zero ("sparse").

# Example: Sparse auto-encoder



### Features as neural networks

- We have mathematical principles to find features h that are better than original pixels.
- Often use "neural networks" to generate these features:



### Learning features as neural networks

- We have mathematical principles to find features h that are better than original pixels.
- Often use "neural networks" to generate these features:



# Learning features as neural networks



# Deep learning

• Try to build deep neural networks that compute higher and higher level abstractions.



### Large-scale deep learning

- Historically, bigger models have tended to make way for improved results.
  - Big networks can represent more complex concepts.
- What types of "high level" concepts can big networks learn?

# "High-level features"

- 1 billion parameter, 9 layer neural network trained by Google.
  - Trained on 10 million YouTube video frames.
- Some features represent "objects" in images.
  - System has no prior knowledge of the concept of "objects".

Faces:

Cats:

Bodies:



> 1000 machines for 1 week. (16000 cores.)

[Le et al., ICML 2012; Dean et al., NIPS 2012]

# Large-scale DL in your basement



### Scaling

- Scale up: Make use of GPUs.
  - Limited GPU memory.
  - Hard to put more than ~4 GPUs in machine.
- Scale out: Use many machines.
  - More than ~10-20 machines uses too many resources.
  - ➤ Networking infrastructure a recurring bottleneck.

### Two ways to scale neural networks

- Simple solution: "data parallelism"
  - Parallelize over several training images at once.



- ➤ Need to synchronize parameters across machines.
- Difficult to fit big models on GPUs.

### Two ways to scale neural networks

- "Model parallelism"
  - Parallelize over neurons / features in the network.



- > Scales to much larger models.
- > Much more frequent synchronization.

### Efficiency

- Why should this work?
  - Number of neurons to move: O(m + n)
  - Amount of computation to do: O(mn)



n neurons

mn connections

m neurons

Big networks end up bottlenecked on compute!

### One catch: Network bottleneck

- Still need to move those neurons...
  - Move 1MB of neurons for 100 images at 1Gbps = 0.8 seconds
    - Must do this for every layer (e.g., 10 or more).
    - Typically >>10 times slower than computation.

- Hard to make "m" and "n" big.
  - How do we scale out efficiently??

### **COTS HPC Hardware**

- Infiniband:
  - FDR Infiniband switch.
  - 1 network adapter per server.56 Gbps; microsecond latency.





- GTX 680 GPUs
  - 4 GPUs per server.
    - > 1 TFLOPS each for ideal workload.



### **OTS HPC Software Infrastructure**

- Infiniband ("IB"): Use MPI
  - MPI = Message Passing Interface
    - Standard mid-level API usually supporting IB.
  - MVAPICH2: GPU-aware MPI implementation.
    - Enables message passing across GPUs with MPI.
    - Transparently handle GPUs in different machines.
- GPUs: NVIDIA CUDA
  - All GPU operations are local. No RDMA, etc.

### Model parallelism in MPI

MPI starts a single process for each GPU.

Enables message passing, but this is pretty unnatural.



# Model parallelism in MPI

MPI starts a single process for each GPU.

Enables message passing, but this is pretty unnatural.



### HPC Software Infrastructure: Communication

- Moving neuron responses around is confusing.
  - Hide communication inside "distributed array".



### HPC Software Infrastructure: Communication

- After some hidden communication, GPU 2 has all the input data it needs.
  - GPU code not much different from 1 GPU.



### HPC Software Infrastructure: GPU

- Bottleneck operations in large networks:
  - Dealing with sparse connectivity patterns.



- Trick: leverage optimized BLAS code for small dense multiplies.
  - Need to pick networks with big blocks of neurons sharing connectivity.

# Results: Unsupervised Learning

- Duplicated results from Le et al., 2012.
  - 3 machines, 12 GPUs

| Object      | Guessing | Random net | 1.8B param net |
|-------------|----------|------------|----------------|
| Human faces | 64.7%    | 64.8%      | 88.2%          |
| Upper body  | 64.7%    | 64.8%      | 80.2%          |
| Cats        | 64.7%    | 64.8%      | 73.0%          |

Visualizations of object-selective neurons:

Faces: Bodies: Cats:

### Results: Scaling

- 9-layer neural network from Le et al., 2012.
  - Compute "fine-tuning" update. (Most demanding step.)



- Up to 11.2B parameter networks.
  - Update time similar to 185M parameter network on 1 GPU.

# Results: Scaling

• Up to 47x increase in throughput:



### Conclusion

- "Tera-scale" deep learning now possible in a typical research lab.
  - Duplicated results from 1000 machines with 3 GPU servers.
- Simple abstractions and OTS software sufficient for a scalable implementation.
- 6.5x larger networks (up to 11.2B parameters).
  - What ideas are we missing to capture more complex concepts?
    - Hardware is suddenly not our bottleneck!

**Thanks to**: Quoc Le, Bill Daly, Cliff Woolley, Michael Bauer, Geoffrey Fox, Stanford CSD-CF, and the authors of MAGMA BLAS and MVAPICH2.