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Problem Overview

There is a significant demand for efficient parallel framework for processing and analytics on
large-scale graphs.

Applications in fields such as: Social Media, Science and Simulation, Advertising, and Web.
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Graph Processing on the CPU
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Graph Processing on the GPU

Initial results show that GPU computing is promising for future processing of large-scale
graphs. Most current research on GPU graph processing focuses on the challenge of irregular
memory accesses and work distribution. However, two gaps in graph computation on the GPU
are overlooked.

I Algorithmic and Implementation Gap: few algorithms have efficient single-node GPU
implementations when compared to the state of the art on CPUs, and multi-node GPU
implementations are even rarer.

I Programmability Gap: the implementations of these algorithms are complex and require
expert programmers. The resulting code couples graph computation to parallel graph
traversal, and is difficult to maintain and extend.
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Graph Processing on the GPU

The main goal of Gunrock’s programming model is to enable end-users to express, develop,
and refine iterative graph algorithms with a high-level, programmable, and high-performance
abstraction.

I Programmability: To be expressive enough to represent a wide variety of graph
computations.

I Performance: To leverage the highest-performing GPU computing primitives.
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Common Characteristics of Graph Problems

I Large-Scale: Facebook has over 1 billion nodes, 144 billion friendships and Twitter has
500 million nodes and over 15 billion follower edges.

I Heterogenous Node Degree Distribution: Several real-world graphs have such
scale-free structure whose degree distribution follows a power law, at least asymptotically,
which brings challenge on load-balancing.

I Iterative Convergent Process: Start with a working queue contains a subset of the
graph, iteratively do the computation, will finally converge.
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Design Choices

I Bulk Synchronous Parallel (BSP) Model: Large amount of independent computations
can be parallelized when traverse the graph. Programming simplicity and scalability
advantages.

I Queue-based Iterative Method: Workload efficient. Small cost of keeping a compact
working queue with GPU primitives: scan + stream compact. Could easily expand to
support priority scheduling.

I Hybrid Push-vs-Pull style of graph traversal: Start graph traversing step from either
the current frontier (push) or the unvisited set (pull) to achieve the highest performance.

I Idempotent Operation: Whether to permit a vertex to appear multiple times in
frontier(s) from one or more iterations.
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Graph Data Representation

Gunrock uses compressed sparse row (CSR) format for vertex-centric operations and edge list
for edge-centric operations.
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Workload Mapping Strategies (What makes Gunrock traversal fast?)

I The Problem: Write various-length neighbor lists of vertices into an output queue.

I Per-thread+Per-warp and Per-CTA: Develop specialized workload mapping strategies
according to neighbor list’s size.

t0

t0 t1 t2 t3 t4 t31... one warp (t4 is the controlling thread)

t1 t2 t3 t4 t5 t6 t7 t8 t9 t42 t255... ...
one block (256 threads, with t42 is the controlling thread)
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Workload Mapping Strategies (What makes Gunrock traversal fast?)

I Partitioned Load-balancing: Organize groups of edges into equal-length chunks and
assigning each chunk to a block.

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t255...

t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t255...
Block 0

Block 1

.

.

.
t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t255... Block n
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Workload Mapping Strategies (What makes Gunrock traversal fast?)
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Workload Mapping Strategies (What makes Gunrock traversal fast?)
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A High-Level View of Programming Model

Bulk iterative processes which iterate between graph traversal and computation using
operators and functors.

above the abstraction

below the abstraction

Enactor
(CUDA Kernel Entry)

Functor
(Problem-spec Computation)

Graph Traverse Operator:
Workload mapping strategies
Idempotent operation switch

Push-vs-Pull based operation switch
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Graph Primitive Example: BFS
A breadth-first search (BFS) algorithm takes a graph and a source vertex s, and computes a
breadth-first search tree rooted at s containing all vertices reachable from s. Our
implementation will compute the predecessor and the distance from source vertex for each
vertex.
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Performance: Speedup

Primitive webbase1M coAuthor socLiveJournal Kron g500

BFS NA(GPU:0.001s) 4 27 22
CC 3 10 13 NA(GPU:0.253s)
BC 2 5 10 10
SSSP 2 15 10 16
PR 13 NA(GPU:0.1s) NA(GPU:3.4s) NA(GPU:29.6s)
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What’s Next?

I More flexible operator set;

I More graph types and data structures;

I External memory and multi-node GPUs support;

I Non-regular Graph Operations/Advanced graph primitives.
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