
ADVANCED OPTIX

David McAllister, James Bigler, Brandon Lloyd

Film final rendering

Predictive rendering

Light baking

Lighting design

OPTIX 3.5 WHAT’S NEW

 OptiX Prime
for blazingly fast traversal & intersection (±300m rays/sec/GPU)

— You give the triangles and rays, you get the intersections, in 5 lines of code

 TRBVH Builder
builds +100X faster, runs about as fast as SBVH (previous fastest)

— Part of OptiX Prime, also in OptiX core

— Does require more memory (to be improved later this year)

— Bug fixes coming in 3.5.2

 GK110B Optimizations (Tesla K40, Quadro K6000, GeForce GTX Titan Black)

+25% more performance

OPTIX IN BUNGIE

 Vertex Light Baking

— Available publicly. Just ask us.

— Kavan, Bargteil, Sloan,
“Least Squares Vertex Baking”,
EGSR 2011

 Compared to textures…

— Less memory & bandwidth

— No u,v parameterization

— Good for low-frequency effects

 Over 250,000 baking jobs done

OPTIX 3.5 WHAT’S NEW

 Compiles 3-7X faster

— Still, try to avoid recompiles

 Hosted Documentation

— http://docs.nvidia.com

 Platform support

— Visual Studio 2012 support

— CUDA 5.5 support

 Bindless Buffers & Buffers of Buffers

— More flexibility with callable programs (e.g., shade trees)

http://docs.nvidia.com/

VISUAL STUDIO OPTIX WIZARD

BUFFER IDS (V3.5)

 Previously only attachable to Variables

 With a Buffer API object, request the ID (rtBufferGetId)

 Use ID

— In a buffer

 rtBuffer<rtBufferId<float3,1>, 1> buffers;

 float3 val = buffers[i][j];

— Passed as arguments*

 float work(rtBufferId<float3,1> data);

— Stored in structs*

 struct MyData { rtBufferId<float3,1>; int stuff; };

* Can thwart some optimizations

OPTIX IN IRAY INTERACTIVE

Iray Interactive mode

Running on OptiX

Approximated GI

Interactive frame rates

Iray Photoreal mode

Running on CUDA

CALLABLE PROGRAM IDS (V3.6)

 Think of them as a functor (function pointer with data)
— PTX (RTprogram)

— Variables attached to RTprogram API object

 With a RTprogram API object, request the ID (rtProgramGetId)

 Use ID
— In a buffer

 rtBuffer<rtCallableProgramId<int,int>, 1> programs;

 int val = programs[i](4);

— As a variable

 typedef rtCallableProgramId<int,int> program_t;

 rtDeclareVariable(program_t, program,,);

 int val = program(3);

— Passed as arguments*

— Stored in structs*

* Can thwart some optimizations

OPTIX IN PIXAR’S RAY TRACING PREVIEWER

Working within

a physically based system,

reducing lights from

>100 to <10

Supports direct and

indirect lighting for

interactive lighting &

camera adjustments

Pixar’s OptiX Viewer

OpenGL

OPTIX 3.5 SDK

 Available now: Windows, Linux, Mac

 http://developer.nvidia.com

http://developer.nvidia.com/

OPTIX 3.5 REGISTERED DEVELOPER PROGRAM

Improvements to OptiX development as it enters its 4th year:

 OptiX Registered Developer Program (RDP)

— Fill out our survey. Reviewed within 1 working day and you have access

— Will become an actual RDP on the NVIDIA Developer Zone by summer

 OptiX Commercial Developer Program

— For commercial applications needing to redistribute OptiX 3.5 binaries

— Includes a Commercial OptiX version with commercial enhancements,

and a higher level of support

— Cost is primarily information, except for high-earning products

which pay an annual fee for our highest level of support

OPTIX PRIME

 Specialized for ray tracing (no shading)

 Replaces rtuTraversal (rtuTraversal is still supported)

 Improved performance

— Uses latest algorithms from NVIDIA Research

 ray tracing kernels [Aila and Laine 2009; Aila et al. 2012]

 Treelet Reordering BVH (TRBVH) [Karras 2013]

— Can use CUDA buffers as input/output

— Support for asynchronous computation

 Designed with an eye towards future features

API OVERVIEW

 C API with C++ wrappers

 API Objects

— Context

— Buffer Descriptor

— Model

— Query

CONTEXT

 Context tracks other API objects and encapsulates the ray
tracing backend

 Creating a context

RTPresult

rtpContextCreate(RTPcontexttype type, RTPcontext* context)

 Context types

RTP_CONTEXT_TYPE_CPU

RTP_CONTEXT_TYPE_CUDA

 Default for CUDA backend uses all available GPUs

— Selects “Primary GPU” and makes it the current device

— Primary GPU builds acceleration structure

CONTEXT

 Selecting devices:

rtpContextSetCudaDeviceNumbers(
RTPcontext context,
int deviceCount,
const int* deviceNumbers)

— First device is used as the primary GPU

 Destroying the context

— destroys objects created by the context

— synchronizes the CPU and GPU

BUFFER DESCRIPTOR

 Buffers are allocated by the
application

 Buffer descriptors encapsulate
information about the buffers

rtpBufferDescCreate(

RTPcontext context,

RTPbufferformat format,

RTPbuffertype type,

void* buffer,

RTPbufferdesc* desc)

 Specify region of buffer to use (in elements)

rtpBufferDescSetRange(RTPbufferdesc desc, int begin, int end)

Context

BufferDesc

BUFFER DESCRIPTOR

 Variable stride supported for vertex format

rtpBufferDescSetStride

— Allows for vertex attributes

BUFFER DESCRIPTOR

 Formats

RTP_BUFFER_FORMAT_INDICES_INT3

RTP_BUFFER_FORMAT_VERTEX_FLOAT3,

RTP_BUFFER_FORMAT_RAY_ORIGIN_DIRECTION,

RTP_BUFFER_FORMAT_RAY_ORIGIN_TMIN_DIRECTION_TMAX,

RTP_BUFFER_FORMAT_HIT_T_TRIID_U_V

RTP_BUFFER_FORMAT_HIT_T_TRIID

…

 Types

RTP_BUFFER_TYPE_HOST

RTP_BUFFER_TYPE_CUDA_LINEAR

MODEL

 A model is a set of triangles
combined with an
acceleration data structure

rtpModelCreate

rtpModelSetTriangles

rtpModelUpdate

 Asynchronous update

rtpModelFinish

rtpModelGetFinished

Context

Model
BufferDesc

BufferDesc

indices

vertices

QUERY

 Queries perform the ray
tracing on a model

rtpQueryCreate

rtpQuerySetRays

rtpQuerySetHits

rtpQueryExecute

 Query types

RTP_QUERY_TYPE_ANY

RTP_QUERY_TYPE_CLOSEST

 Asynchronous query

rtpQueryFinish

rtpQueryGetFinished

Context

Model
BufferDesc

BufferDesc

indices

vertices

Query
BufferDesc

BufferDesc

rays

hits

0

20

40

60

80

100

120

140

160

180

200

S
p
e
e
d
u
p
 o

v
e
r

S
B
V

H

BUILD PERFORMANCE

0.0

0.5

1.0

1.5

2.0

2.5

3.0

S
p
e
e
d
u
p
 o

v
e
r

rt
u
T
ra

v
e
rs

a
l

RAY TRACING PERFORMANCE

0.0

50.0

100.0

150.0

200.0

250.0

300.0

350.0

M
ra

y
s/

s
fo

r
d
if

fu
se

 r
a
y
s

RAYTRACING PERFORMANCE

OPTIX PRIME ROADMAP

 Features we want to implement

— Animation support (refit/refine)

— Instancing

— Large-model optimizations

OPTIMIZING PRIME

 Use asynch API to keep the CPU busy

— important for multi-threading (synchronous calls lock out other
threads)

 Avoid host ↔ device copies

— buffers on host for RTP_CONTEXT_TYPE_HOST

— buffers on device for RTP_CONTEXT_TYPE_DEVICE

 Lock host buffers for faster host ↔ device copies

— lockable memory is limited

— use multi-buffering to stage through lockable memory (see
simplePrimeppMultiBuffering sample)

OPTIMIZING PRIME – MULTI-GPU

 Multi-device context requires inter-device copies

— Faster to put buffers in host memory (with current CUDA)

 Max performance: generate rays and process hits on the
device

 Create context per device

— Build model on one device and copy to others with rtpModelCopy

— OR build the same model on all devices

 (See simplePrimeppMultiGPU sample)

OPTIX VS. OPTIX PRIME

 Single ray programming model

 Includes shading

— Native recursion

 Programmable primitives

 CPU backend unavailable

 Expressive API

 Virtualizes GPU resources

OptiX OptiX Prime
 Works best on large waves

 No shading support

— Use CUDA

 Triangles only

 Performant CPU backend

 Constrained API, slow to evolve

 To the metal

 Performance++

OPTIMIZING OPTIX DEVICE CODE

 Maximize rays/second

— Avoid gratuitous divergence

— Avoid memory traffic

— Improve single thread performance

 Minimize rays needed for given result

— Improved ray tracing algorithms

 MIS, QMC, MCMC, BDPT, MLT

Callable

Program

OPTIX EXECUTION MODEL

rtContextLaunch
Ray Generation

Program

Exception

Program

Selector Visit

Program

Miss

Program
Node Graph

Traversal

Acceleration

Traversal

Launch

Traverse Shade

rtTrace

Closest Hit

Program

Any Hit

Program

Intersection

Program

MINIMIZE CONTINUATION STATE

 OptiX rewrites rtTrace, rtReportIntersection, etc. as:

— Find all registers needed after rtFunction (continuation state)

— Save continuation state to local memory

— Execute function body

— Restore continuation state from local memory

 Minimizing continuation state can have a large impact

— Avoids local variable saves and restores

— This also improves execution coherence

— How?

 Push rtTrace calls to bottom of function

 Push computation to top of function

MINIMIZE CONTINUATION STATE

float3 light_pos, light_color, light_scale;

sampleLight(light_pos, light_color, light_scale); // Fill in vals

optix::Ray ray = ...; // create ray given light_pos

PerRayData shadow_prd;

rtTrace(top_object, ray, shadow_prd); // Trace shadow ray

return light_color*light_pos*shadow_prd.attenuation;

light_pos and light_color

saved to local stack

MINIMIZE CONTINUATION STATE

float3 light_pos, light_color, light_scale;

sampleLight(light_pos, light_color, light_scale); // Fill in vals

float3 scaled_light_color = light_color*light_scale;

optix::Ray ray = ...; // create ray given light_pos

PerRayData shadow_prd;

rtTrace(top_object, ray, shadow_prd); // Trace shadow ray

return scaled_light_color*shadow_prd.attenuation;

MINIMIZE CONTINUATION STATE

RT_PROGRAM void closestHit() {

float3 N = rtTransformNormal(normal);

float3 P = ray.origin + t_hit * ray.direction;

float3 wo = -ray.direction;

// Compute direct lighting

float3 on_light = lightSample();

float dist = length(on_light-P)

float3 wi = (on_light - P) / length;

float3 bsdf = bsdfVal(wi, N, wo, bsdf_params);

bool is_occluded = traceShadowRay(P, wi, dist);

if(!is_occluded) prd.result = light_col * bsdf;

// Fill in values for next path trace iteration

bsdfSample(wo, N, bsdf_params,

prd.next_wi, prd.next_bsdf_weight);

}

RT_PROGRAM void closestHit() {

float3 N = rtTransformNormal(normal);

float3 P = ray.origin + t_hit * ray.direction;

float3 wo = -ray.direction;

// Fill in values for next path trace iteration

bsdfSample(wo, N, bsdf_params,

prd.next_wi, prd.next_bsdf_weight);

// Compute direct lighting

float3 on_light = lightSample();

float dist = length(on_light - P)

float3 wi = (on_light - P) / length;

float3 bsdf = bsdfVal(wi, N, wo, bsdf_params);

bool is_occluded = traceShadowRay(P, wi, dist);

if(!is_occluded) prd.result = light_col * bsdf;

}

Pulled above trace to

reduce stack state

DESIGN GARAGE: ITERATIVE PATH TRACER

 Closest hit programs do:

— Direct lighting (next event estimation with shadow query ray)

— Compute next ray (sample BSDF for reflected/refracted ray info)

— Return direct light and next ray info to ray gen program

 Ray gen program iterates

DESIGNGARAGE: ITERATIVE PATH TRACER

RT_PROGRAM void closestHit() {

// Calculate BSDF sample for next path ray

float3 ray_direction, ray_weight;

sampleBSDF(wo, N, ray_direction, ray_weight);

// Recurse

float3 indirect_light = tracePathRay(P, ray_direction,

ray_weight);

// Perform direct lighting

...

prd.result = indirect_light + direct_light;

}

RT_PROGRAM void rayGeneration(){

float3 ray_dir = cameraGetRayDir();

float3 result = tracePathRay(camera.pos, ray_dir, 1);

output_buffer[launch_index] = result;

}

DESIGNGARAGE: ITERATIVE PATH TRACER

RT_PROGRAM void closestHit() {

// Calculate BSDF sample for next path ray

float3 ray_direction, ray_weight;

sampleBSDF(wo, N, ray_direction, ray_weight);

// Return sampled ray info and let ray_gen

// iterate

prd.ray_dir = ray_direction;

prd.ray_origin = P;

prd.ray_weight = ray_weight;

// Perform direct lighting

...

prd.direct = direct_light;

}

RT_PROGRAM void rayGeneration() {

PerRayData prd;

prd.ray_dir = cameraGetRayDir();

prd.ray_origin = camera.position;

float3 weight = make_float3(1.0f);

float3 result = make_float3(0.0f);

for(i = 0; i < MAX_DEPTH; ++i) {

traceRay(prd.ray_origin,

prd.ray_dir, prd);

result += prd.direct*weight;

weight *= prd.ray_weight;

}

output_buffer[launch_index] = result;

}

A FEW QUICK SUGGESTIONS

 Accessing stack allocated arrays through pointers uses local
memory not registers

— Change float v[3] to float v0, v1, v2

— Avoid accessing variables via pointer

 Careful Arithmatic

— nvcc --use_fast_math

— Do not unintentionally use double precision math

 1.0 != 1.0f

 cos() != cosf()

— Search for “.f64” in your PTX files

 Take advantage of any hit programs and rtTerminateRay for
fast boolean ray queries

 Use interop to share data (CUDA, OpenGL, DirectX)

SHALLOW NODE HIERARCHIES

 Flatten node hierarchy

— Collapse nested RTtransforms

— Pre-transform vertices

— Use RTselectors judiciously

 Combine multiple meshes into single mesh

  A single BVH over all geometry

  Per-mesh BVHes

 Reuse RTprograms

— Use variables or control flow to reuse programs

  singleSidedDiffuse closest hit and doubleSidedDiffuse closest hit

  diffuse closest hit and RTvariable do_double_sided

— Use in moderation: über-shaders cause longer compilation

SHARE GRAPH NODES

RTmaterial

RTprogram
closestHitLambertian

RTgeometryinstance

RTvariable
Kd: float3(1, 0, 0)

RTgeometryinstance

RTvariable
Kd: float3(0, 0, 1)

RTprogram
closestHitLambertian

RTmaterial

SHARE GRAPH NODES

RTmaterial

RTprogram
closestHitLambertian

RTgeometryinstance

RTvariable
Kd: float3(1, 0, 0)

RTgeometryinstance

RTvariable
Kd: float3(0, 0, 1)

Use different RTvariables,

bound at the

RTgeometryinstance level

REDUCING NODE GRAPH

Geometry

Instance
Geometry

Instance

Geometry

Instance

Indices

Vertices

Geometry

Group

Indices Indices

rtGeometrySetPrimitiveIndexOffset (v3.5)

Geometry

Instance
Geometry

Instance

Geometry

Instance

Indices

Vertices

Geometry

Group

DYNAMIC VARIABLE LOOKUPS

RTmaterial

RTprogram
closestHitLambertian

RTgeometryinstance
RTvariable: Kd (1,0,0)

RTgeometryinstance

RTcontext
RTvariable: Kd (1,1,1)

RTgeometrygroup

1

3

4

2 2

DYNAMIC VARIABLE LOOKUPS

RTmaterial

RTprogram
closestHitLambertian

RTgeometryinstance
RTvariable: Kd (1,0,0)

Rtgeometryinstance

RTvariable: Kd(1,1,1)

RTcontext

RTgeometrygroup

1

3

4

2 2

DATA TRANSFER – MAKING IT FAST

 PCI Express throughput can be terrible for non-power-of-two
element sizes

— float3 buffer can transfer significantly slower than float4 buffer

 Working with INPUT_OUTPUT buffers on multiple GPUs:

— By default OptiX will store the buffer on the host in zero-copy
memory

— Often want to write to a buffer on GPU but never map back to host
(e.g. accumulation buffers, variance data, random seed data)

— Mark the buffer as RT_BUFFER_GPU_LOCAL and OptiX will keep the
buffer on the device.

— Each device can only see the results of buffer elements it has written
(usually ok since most threads only read/write to their own
rtLaunchIndex)

CALLABLE PROGRAMS SPEED UP COMPILATION

 OptiX inlines all CUDA functions

  Fast execution

  Large kernel to compile

 Use callable programs

 Callable programs reduce OCG compile times

 Small rendering performance overhead

 Enables shade trees and plugin rendering architectures

CALLABLE PROGRAMS SPEED UP COMPILATION

RT_CALLABLE_PROGRAM float3 checker_color(float3 input_color, float scale)
{
uint2 tile_size = make_uint2(launch_dim.x / N, launch_dim.y / N);
if (launch_index.x/tile_size.x ^ launch_index.y/tile_size.y)
return input_color * scale;

else
return input_color;

}

rtCallableProgram(float3, get_color, (float3, float));

RT_PROGRAM camera()
{
float3 initial_color;
// … trace a ray, get the initial color …
float3 final_color = get_color(initial_color, 0.5f);
// … write new final color to output buffer …

}

HIGH PERFORMANCE GRAPHICS 2014

 Lyon, France

 June 23-25

 Paper Submissions Due: April 4

 Poster Submissions Due: May 16

 Hot3D Submissions Due: May 23

www.highperformancegraphics.org

